Philosophy 151: Definitions from van Dalen

Lucas Garron

March 9, 2011

Trying to make sense of a "slightly" inconsistent book about logic.

Chapter 1. Propositional Logic

PROP (7) smallest set X with: (i)
$$p_i \in X$$

 $-\perp \in X$
(ii) $(\varphi \Box \psi) \in X \{\land, \lor, \rightarrow, \leftrightarrow\}$
(iii) $(\neg \varphi)$

Typical element name: p

rank (12) Recursively defined "depth" of a proposition.

valuation (18) A mapping $v : PROP \to \{0, 1\}$, defined recursively on *PROP*. $[|\varphi \land \psi|] = v(\varphi \land \psi) = min(v(\varphi), v(\psi))$, etc.

 $\models \varphi$ (19, propositional) φ is a tautology (true for all valuations)

 $\Gamma\vDash \varphi \ \ [|\psi|]_v=1 \text{ or all } \varphi\in \Gamma\Leftrightarrow [|\varphi|]_v=1$

 $\Gamma \vdash \varphi$ (36) There is a derivation with conclusion φ and all hypotheses in Γ

 $\vdash \varphi$ (36) $\Gamma = \emptyset$. φ is a theorem.

Consistency Γ (set of propositions) is consistent if $\Gamma \not\vdash \bot$.

Maximal Consistency Γ consistent such that $\Gamma \subseteq \Gamma'$ and Γ' consistent $\Rightarrow \Gamma = \Gamma'$.

Chapter 2. Predicate Logic

Structure (58) An ordered sequence $\langle A, R_1, ..., R_n, F_1, ..., F_m, \{c_i | i \in I\} \rangle$, where the relations and functions are on A, and the constants are elements of A.

Typical element name: \mathfrak{A}

Similarity Type (of a Structure) (59) A sequence $\langle r_1, ..., r_n; a_1, ..., a_n; \kappa \rangle$ where r_i an a_i are arities (number of arguments / number of arguments without output value) of R_i and F_i , and κ is the number of constants.

Typical name: none.

Language A set of expressions(?) (sentences?) built up of a set of symbols with amounts corresponding to a similarity type.
(n.b. = is always a relation: identity/equality.)

Typical name: L

Universe of a Structure $|\mathfrak{A}| = A$ as in the definition.

TERM (61) smallest set X such that: (i) constants $\overline{c}_i, i \in I$, variables $x_i, i \in \mathbb{N}$ (ii) $t_1, ..., t_{a_i} \in X \Rightarrow f_i(t_1, p_{\dots}, t_{a_i}) \in X$

Typical element name: t.

FORM (61) smallest set X with: (i) \perp - - $P_i(...)$ (... each in X) - - $t_1 = t_2 \in X$ (ii) $(\varphi \Box \psi) \in X \{\land, \lor, \rightarrow, \leftrightarrow\}$ (iii) $(\neg \varphi)$ (iii) $((\forall x_i)\varphi), ((\exists x_i)\varphi)$

Typical element name: φ

Free variables (63-64) The set FV(t) and $FV(\varphi)$ is defined recursively.

Closed / Open / Sentence (64) t (or φ) is closed if $FV(t) = \emptyset$. A closed formula is a sentence. A formula without quantifiers is open.

 $TERM_c$ (64) Set of closed terms (in a language?).

SENT (64) Set of sentences (in a language?).

Free variable (66) φ free for \$ in φ , defined recursively using FV.

Extended language (67) $L(\mathfrak{A})$: add constant symbols for all elements of \mathfrak{A} to L. \overline{a} from $a \in |\mathfrak{A}|$

Interpretation/valuation of sentences in $L(\mathfrak{A})$ (69-70) Recursively defined valuation over FORM(?). $[|\varphi|]_{\mathfrak{A}} \text{ or } v_{\mathfrak{A}}(\varphi) \text{ is a mapping } [|.|]_{\mathfrak{A}} : SENT \to \{0,1\}, \text{ recursively defined.}$ (Valuation of a term: $(.)^{\mathfrak{A}} : TERM_c \to |\mathfrak{A}|)$

 $\mathfrak{A} \models \varphi$ (70) Defined as $[|\varphi|]_{\mathfrak{A}} = 1$ (\models is the "satisfaction relation").

(Universal) closure If $FV(\varphi) = z_1, ..., z_k$, then $Cl(\varphi) := \forall z_1...z_k\varphi$.

Some Semantics (71) (i) $\mathfrak{A} \models \varphi \Leftrightarrow \mathfrak{A} \models Cl(\varphi)$ (ii) $\models \varphi \Leftrightarrow \mathfrak{A} \models \varphi \forall \mathfrak{A}$ (of the appropriate type) (iii) $\mathfrak{A} \models \Gamma \Leftrightarrow \mathfrak{A} \models \psi \forall \psi \in \Gamma$. (iv) $\Gamma \models \varphi \Leftrightarrow (\mathfrak{A} \models \Gamma \Rightarrow \mathfrak{A} \models \varphi)$, where $a \in \Gamma$ and φ are sentences.

Model (71) If $\mathfrak{A} \models \sigma$, then \mathfrak{A} is a model of σ .

Semantic consequence (71) φ is a semantic consequence of Γ if $\Gamma \vDash \varphi$ (φ holds in each model of Γ .) ($\vDash \varphi$ means φ is *true*.)

Satisfiability A formula with free variables z_i is satisfiable if there is a set of elements $a_i \in |\mathfrak{A}|$ such that $\mathfrak{A} \models \varphi[\overline{a}_1, ..., \overline{a}_k, /\overline{z}_1, ..., \overline{z}_k]$ (substitution).

Prenex (normal) form (78) φ with quantifiers followed by an open formula. (Theorem: For each φ , \exists a prenex formula ψ such that $\models \varphi \leftrightarrow \psi$)

Identity Axioms $I_1: \forall x \ (x = x) \ (reflexive)$ $I_2: \forall xy \ (x = y \rightarrow y = x) \ (symmetric)$ $I_3: \forall xyz \ (x = y \land y = z \rightarrow x = z) \ (transitive)$ $I_4:$ If the arguments are equal, $t(x_1, ..., x_n) = t(y_1, ..., y_n)$ and $\varphi(x_1, ..., x_n) \rightarrow \varphi(y_1, ..., y_n)$

Chapter 3. Completeness

Theory (104) A theory T is a collection of sentences such that $T \vdash \varphi \Rightarrow \varphi \in T$ (closed under derivability). Typical name: T.

Axiom Set (104) A set Γ such that $T = \{\varphi | \Gamma \vdash \varphi\}.$

Henkin Theory (104) T is a Henkin theory if for each sentence $\exists x \ \varphi(x)$ there exists a constant c such that $((\exists x \ \varphi(x)) \rightarrow \varphi(c)) \in T$. (c is a witness for $\exists x \ \varphi(x)$.)

Extension (of a theory) (104) Theories T and T' with respective languages L, L':

(i) T is an extension of T' if $T\subseteq T'$

(ii) T' is a conservative extension of T if $T' \cup L = T$

L*: Add c_{φ} for each φ of the form $\exists x \ \varphi(x)$ T*: $T \cup \{\exists x \ \varphi(x) | \exists x \ \varphi(x) \text{ closed, with witness } c_{\varphi}\}$ (theorem: conservative over T)

Model Existence Lemma (103, 109) A theorem. If L has cardinality κ and Γ is a set of consistent sentences, then Γ has a model of cardinality $\leq \kappa$.

Compactness Theorem (111) Γ has a model \Leftrightarrow each finite $\delta \subset \Gamma$ has a model.

 $Mod(\Gamma) \ Mod(\Gamma) = \{\mathfrak{A} | \mathfrak{A} \vDash \sigma \text{ for all } \sigma \in \Gamma\}.$

- **Theory of** (\mathcal{K}) If \mathcal{K} is a class of structures with the same similarity type, $Th(\mathcal{K}) = \{\sigma | \mathfrak{A} \models \sigma \text{ for all } \mathfrak{A} \in \mathcal{K}\}$
- **Reduct** / Expansion \mathfrak{A} is a reduct of \mathfrak{B} if $|\mathfrak{A}| = |\mathfrak{B}|$ and R_i, F_j, c_k from \mathfrak{A} are also in \mathfrak{B} . \mathfrak{B} is an expansion of \mathfrak{A} .
- Axiomatizability A class \mathcal{K} of structures is (finitely) axiomatizable of there is a (finite) set Γ such that $\mathcal{K} = Mod(\Gamma)$.
- Structure Universe Homomorphism (119) (i) $f : |\mathfrak{A}| \to |\mathfrak{B}|$ is a homomorphism if each P_i, F_j, c_k maps from \mathfrak{A} to \mathfrak{B} if f is mapped over its arguments.
 - (ii) f is an isomorphism if it's also bijective and predicates can map back.
- **Isomorphic Structures (119)** $\mathfrak{A} \cong \mathfrak{B}$ if there is an isomorphism $f : \mathfrak{A} \to \mathfrak{B}$.
- Elementary Equivalence (NOT SYMMETRIC) $(\mathfrak{A} \equiv \mathfrak{B})$ (119) \mathfrak{A} is elementarily equivalent to \mathfrak{B} if for all sentences $\sigma \in L$ (language of \mathfrak{A}), $\mathfrak{A} \models \sigma \Leftrightarrow \mathfrak{B} \models \sigma$. (Note: $\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow Th(\mathfrak{A}) = Th(\mathfrak{B})$)
- Substructure / Submodel $(\mathfrak{A} \subseteq \mathfrak{B})$ (119) \mathfrak{A} is a substructure/submodel of \mathfrak{B} (same type) if all elements of \mathfrak{B} , "restricted to the universe of \mathfrak{A} ," are in \mathfrak{A} .
- Elementary Substructure $(\mathfrak{A} \prec \mathfrak{B})$ (119) \mathfrak{A} is an elementary substructure of \mathfrak{B} (\mathfrak{B} is an elementary extension of \mathfrak{A}) if $\mathfrak{A} \subseteq \mathfrak{B}$ and for all $\varphi(...) \in L$, $a_i \in |\mathfrak{A}|$, $\mathfrak{A} \models \varphi(\overline{a}_1, ..., \overline{a}_n) \Leftrightarrow \mathfrak{B} \models \varphi(\overline{a}_1, ..., \overline{a}_n)$. (\mathfrak{A} and \mathfrak{B} have the same true sentences with parameters in \mathfrak{A} .) Note that $\mathfrak{A} \prec \mathfrak{B} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$.
- Complete theory (124) T with axioms $\Gamma \subset L$ is called complete if for each sentence $\sigma \in L$, either $\Gamma \vdash \sigma$ or $\Gamma \vdash \neg \sigma$.
- κ -categorical (125) Let κ be a cardinal. T is κ -categorical if it has exactly one model of cardinality κ up to isomorphism.

Model complete (131) T is model complete if $\mathfrak{A}, \mathfrak{B} \in Mod(T), \mathfrak{A} \subseteq \mathfrak{B} \Rightarrow \mathfrak{A} \prec \mathfrak{B}$.

Prime model T has a prime model if that model is contained in every model of T up to isomorphism.

Chapter 4. Second Order Logic

Second-order alphabet (i) individual variables $x_0, ...$ (ii) individual constants $c_0, ...$ for each $n \ge 0$: (iii) *n*-ary set (predicate) variables $X_0^n, X_1^n, ...$ also for each $n \ge 0$: (iv) *n*-ary set (predicate) constants $\bot, P_0^n, P_1^n, ...$ (v) connectives: $\land', \rightarrow, \lor, \neg, \leftrightarrow, \exists, \forall$. (and auxiliary symbols: (),) Countable variables of each kind, any number of constants. Second-order formulas *FORM* is inductively defined, again:

- (i) $X_i^0, P_i^0, \perp \in FORM$
- (ii) for $n > 0, X^{n}(t_{1}, ..., t_{n}) \in FORM, P^{n}(t_{1}, ..., t_{n}) \in FORM$
- (iii) FORM is closed under the propositional connectives
- (iv) FORM is closed under first- and second-order quantification.

Second-order structure (144) $\mathfrak{A} = \langle A, A^*, c^*, R^* \rangle$, where:

 $A* = \langle A_n | n \in \mathbb{N} \rangle$ $c* = \{c_i | i \in \mathbb{N} \} \subset A$ $A = \langle R_i^n | i, n \in \mathbb{N} \rangle, \text{ and } A_i \subseteq \mathcal{P}(A^n), R_i^n \in A_n.$

Full structure (144) $A_n = \mathcal{P}(A^n)$; each A_n contains all *n*-ary relations.

Validity (144) $\mathfrak{A} \models \varphi$ similar to first-order logic.

Comprehension Schema (145) $\exists X^n \forall x_1 \dots x_n [\varphi(x_1, \dots, x_n) \leftrightarrow X^n(x_1, \dots, x_n)].$

Model of second-order logic (147) A second-order structure \mathfrak{A} is a model of second-order logic if the comprehension schema is valid in \mathfrak{A} .

Intuitionistic Logic

Gödel Translation The mapping $\circ : FORM \to FORM$: (i) $\bot^{\circ} := \bot, \varphi^{\circ} := \neg \neg^{\varphi}$. (ii) $(\varphi \land \psi)^{\circ} := \varphi^{\circ} \land \psi^{\circ}$ (iii) $(\varphi \lor \psi)^{\circ} = \neg (\neg \varphi^{\circ} \land \neg \psi^{\circ})$ (iv) $(\varphi \to \psi)^{\circ} := \varphi^{\circ} \to \psi^{\circ}$ (v) $(\forall x \ \varphi(x))^{\circ} := \forall x \ \varphi^{\circ}(x)$ (vi) $(\exists x \ \varphi(x))^{\circ} := \neg \forall x \ \neg \varphi^{\circ}(x)$ (Theorem: $\Gamma \vdash_{c} \varphi \Leftrightarrow \Gamma \vdash_{i} \varphi^{\circ})$

Kripke Model $\mathcal{K} = \langle K, \Sigma, C, D \rangle$. *K* is a (non-empty) poset, *C* a function on the constants of *L*, *D* a set-valued function on *K*, Σ a function on *K* with certain constraints. (*D* and Σ also satisfy constraints.)

Comments

Not included:

- 1. Some alphabets
- 2. Various definitions of substitution.
- 3. $Diag(\mathfrak{A})$, isomorpically embedded (120).
- 4. decidable (Γ), decidable (T), effectively enumerable (Γ), effectively axiomatizable (T)
- 5. Skolem functions, axioms, extensions, expansions (136), hulls (141)