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Reals

We will state several axioms. Any set with these properties is called the set of real numbers. (HW:
Show that the set is unique).

Axiom Structure

1. Field Axoms (algebra), +, ·

2. Order Axioms, >

3. Completeness Axioms, related to limits

Algebraic structures:

Definition 1 Semigroup. A semigroup (G, ∗) is a set G with a map ∗ : G×G→ G (∗(g, g′) = g∗g′
- g, g′ ∈ G)
∗ should be associative. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

There is an identity e ∈ G such that g ∗ e = g = e ∗ g for all g ∈ G.

Lemma 1 The identity in a semigroup is unique. Suppose both e and e′ are identity elements.
Then e = e ∗ e′ = e′.

Definition 2 Commutative (or Abelian) Semigroup A commutative semigroup is a semigroup
(G, ∗) such that g ∗ g′ = g′ ∗ g for all g, g′ ∈ G.

Definition 3 Left inverse. If (G, ∗) is a semigroup, g ∈ G is a left inverse for g is an element
g′ ∈ G such that g′ ∗ g = e.

Definition 4 Right inverse. Same with g ∗ g′ = e.

Definition 5 Invertible g ∈ G if it has a left inverse and a right inverse.

Lemma 2 If (G, ∗) is a semigroup and g ∈ G is invertible, then any left inverse equals any right
inverse. Suppose g ∈ G, a a left inverse, r a right inver for g. Then a = a ∗ e = a ∗ (g ∗ b) =
(a ∗ g) ∗ b = e ∗ b = b
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Definition 6 Group A group (G, ∗) is a semigroup all of whose elements are invertible.

Definition 7 Commutative Group A commutative group is a group if g∗g′ = g′∗g for all g, g′ ∈ G.

Definition 8 Field. A field (F,+, ·) is a set F and two maps

1. + : F× F→ F

2. · : F× F→ F

...such that (F,+) is a commutative group, (F, ·) is a commutative semigroup.
0 in the identity of (F,+), 1 in the identity of (F,+), every x ∈ F (x 6= 0) is invertible in (F, ·),
1 6= 0, and the distributive law holds: (x + y) · z = (x · z) + (y · z) for all x, y, z ∈= F.

Lemma 3 If F is a field, then for all x ∈ F, x · 0 = 0.

Notation 1 The inverse of x in (F,+) is written as −x. For (F, ·), x−1 = 1
x

Proof of Lemma: 0 = x · 0 + (−(x · 0)) = x · (0 + 0) + (−(x · 0)) = (x · 0) + (x · 0) + (−(x · 0)) =
(x · 0) + ((x · 0) + (−(x · 0))) = (x · 0) + 0 = x · 0

Example 1 Other algebraic statements:
−x = (−1) · x (x ∈ F)
(−x) · (−y) = x · y (x, y ∈ F)

Example 2 Q,R,C,Z/2Z

Order Axioms

Definition 9 Ordered Field An ordered field F,+, ·, P is a field (F,+, ·) and a subset P of F such
that:

1. x ∈ F⇒ exactly one of the following holds: x ∈ P,−x ∈ P, x = 0

2. x, y ∈ P ⇒ x + y ∈ Y, x · y ∈ P

P is called the positive elements of F.

Example 3 R,Q, {a + b
√

2 : a, b ∈ Q} ⊂ R

Lemma 4 1 ∈ P . Proof: By 1. of the definition, exactly one of the following holds: 1 = 0, 1 ∈
P,−1 ∈ P .
Since we have a field, 1 6= 0.
Assume −1 ∈ P . Then (−1) · (−1) = 1 ∈ P by 2. Contradiction.

Definition 10 We write x > y if x− y ∈ P

Definition 11 We write x < y if y − x ∈ P This has the usual properties. (Note: x ∈ P means
x > 0, x 6∈ P means x < 0) (e.g. x > y ⇒ x + z > y + z, x, y, z ∈ F)
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Completeness

Problem: Fields like Q have sequences that don’t converge inside the field.

Definition 12 Upper bound, lower bound Suppose F is an ordered field and A ⊂ F. We say that
x ∈ F is an upper bound for A if a ∈ A⇒ a ≤ x (lower bound: a ≥ x)

Definition 13 Least upper bound Suppose A ⊂ F, A 6= ∅. We say that x ∈ A is a least upper
bound for A if:

1. x is an upper bound of A

2. if y is an upper bound of A, then y ≥ x

Definition 14 Greatest upper bound Complementary definition.

Lemma 5 If A ⊂ F, A 6= ∅ has a least upper bound, it is unique. Suppose not, x, y ∈ F are both
least upper bounds. Then x ≤ y, y ≤ x⇒ x = y

Notation 2 If it exists, then the unique least upper bound is denoted supA (supremum)

Notation 3 Greatest lower bound: infA (infimum)

Definition 15 Reals The reals are the ordered field (R,+, ·, P ) such that if A ⊂ R, A 6= ∅ and A
has an upper bound, then A has a least upper bound.

Example 4 In Q, truncated decimal expansions of
√

2 have no least upper bound. In R, they do.
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