Math 171 Class Notes

Lucas Garron

March 29, 2011

Mar 29, 2011

Reals

We will state several axioms. Any set with these properties is called the *set of real numbers*. (HW: Show that the set is unique).

Axiom Structure

- 1. Field Axoms (algebra), $+, \cdot$
- 2. Order Axioms, >
- 3. Completeness Axioms, related to limits

Algebraic structures:

Definition 1 Semigroup. A semigroup (G, *) is a set G with a map $* : G \times G \to G$ $(*(g, g') = g * g' - g, g' \in G)$

* should be associative. $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$

There is an identity $e \in G$ such that g * e = g = e * g for all $g \in G$.

Lemma 1 The identity in a semigroup is unique. Suppose both e and e' are identity elements. Then e = e * e' = e'.

Definition 2 Commutative (or Abelian) Semigroup A commutative semigroup is a semigroup (G, *) such that g * g' = g' * g for all $g, g' \in G$.

Definition 3 Left inverse. If (G, *) is a semigroup, $g \in G$ is a left inverse for g is an element $g' \in G$ such that g' * g = e.

Definition 4 Right inverse. Same with g * g' = e.

Definition 5 Invertible $g \in G$ if it has a left inverse and a right inverse.

Lemma 2 If (G, *) is a semigroup and $g \in G$ is invertible, then any left inverse equals any right inverse. Suppose $g \in G$, a a left inverse, r a right inver for g. Then a = a * e = a * (g * b) = (a * g) * b = e * b = b

Definition 6 Group A group (G, *) is a semigroup all of whose elements are invertible.

Definition 7 Commutative Group A commutative group is a group if g * g' = g' * g for all $g, g' \in G$.

Definition 8 Field. A field $(\mathbb{F}, +, \cdot)$ is a set F and two maps

- 1. $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$
- 2. $\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$

...such that $(\mathbb{F}, +)$ is a commutative group, (F, \cdot) is a commutative semigroup. 0 in the identity of $(\mathbb{F}, +)$, 1 in the identity of $(\mathbb{F}, +)$, every $x \in \mathbb{F}$ $(x \neq 0)$ is invertible in (F, \cdot) , $1 \neq 0$, and the distributive law holds: $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ for all $x, y, z \in \mathbb{F}$.

Lemma 3 If \mathbb{F} is a field, then for all $x \in \mathbb{F}, x \cdot 0 = 0$.

Notation 1 The inverse of x in $(\mathbb{F}, +)$ is written as -x. For (\mathbb{F}, \cdot) , $x^{-1} = \frac{1}{x}$

Proof of Lemma: $0 = x \cdot 0 + (-(x \cdot 0)) = x \cdot (0 + 0) + (-(x \cdot 0)) = (x \cdot 0) + (x \cdot 0) + (-(x \cdot 0)) = (x \cdot 0) + ((x \cdot 0) + (-(x \cdot 0))) = (x \cdot 0) + 0 = x \cdot 0$

Example 1 Other algebraic statements: $-x = (-1) \cdot x \ (x \in \mathbb{F})$ $(-x) \cdot (-y) = x \cdot y \ (x, y \in \mathbb{F})$

Example 2 $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/2\mathbb{Z}$

Order Axioms

Definition 9 Ordered Field An ordered field $\mathbb{F}, +, \cdot, P$ is a field $(\mathbb{F}, +, \cdot)$ and a subset P of \mathbb{F} such that:

1. $x \in \mathbb{F} \Rightarrow$ exactly one of the following holds: $x \in P, -x \in P, x = 0$

2. $x, y \in P \Rightarrow x + y \in Y, x \cdot y \in P$

P is called the positive elements of \mathbb{F} .

Example 3 $\mathbb{R}, \mathbb{Q}, \{a + b\sqrt{2} : a, b \in Q\} \subset \mathbb{R}$

Lemma 4 $1 \in P$. Proof: By 1. of the definition, exactly one of the following holds: $1 = 0, 1 \in P, -1 \in P$. Since we have a field, $1 \neq 0$. Assume $-1 \in P$. Then $(-1) \cdot (-1) = 1 \in P$ by 2. Contradiction.

Definition 10 We write x > y if $x - y \in P$

Definition 11 We write x < y if $y - x \in P$ This has the usual properties. (Note: $x \in P$ means $x > 0, x \notin P$ means x < 0) (e.g. $x > y \Rightarrow x + z > y + z, x, y, z \in \mathbb{F}$)

Completeness

Problem: Fields like \mathbb{Q} have sequences that don't converge inside the field.

Definition 12 Upper bound, lower bound Suppose \mathbb{F} is an ordered field and $A \subset \mathbb{F}$. We say that $x \in \mathbb{F}$ is an upper bound for A if $a \in A \Rightarrow a \leq x$ (lower bound: $a \geq x$)

Definition 13 Least upper bound Suppose $A \subset \mathbb{F}, A \neq \emptyset$. We say that $x \in A$ is a least upper bound for A if:

- 1. x is an upper bound of A
- 2. if y is an upper bound of A, then $y \ge x$

Definition 14 Greatest upper bound Complementary definition.

Lemma 5 If $A \subset \mathbb{F}$, $A \neq \emptyset$ has a least upper bound, it is unique. Suppose not, $x, y \in \mathbb{F}$ are both least upper bounds. Then $x \leq y, y \leq x \Rightarrow x = y$

Notation 2 If it exists, then the unique least upper bound is denoted supA (supremum)

Notation 3 Greatest lower bound: infA (infimum)

Definition 15 *Reals* The reals are the ordered field $(\mathbb{R}, +, \cdot, P)$ such that if $A \subset \mathbb{R}, A \neq \emptyset$ and A has an upper bound, then A has a least upper bound.

Example 4 In \mathbb{Q} , truncated decimal expansions of $\sqrt{2}$ have no least upper bound. In \mathbb{R} , they do.