Math 152 Notes

Lucas Garron

December 3, 2009

20091203

PNT: Probability *n* is prime: $\sim log(n)$. Define $\pi(x) = \# primes \leq x$; PNT: $\pi(x) \sim \int_2^x \frac{dx}{log(x)}$

Equivalent: $\sum_{p \le x} log(p) \sim x$ Better: $\sum_{n=p^k < x} log(p) \sim x$ $\sum_{x \le n} \Lambda(n) \sim x \text{ where } \Lambda(n) = (\delta_{n=p^k}) log(x) \text{ (von Mangoldt function)}$ $\sum \frac{\Lambda(n)}{n^s} = -\frac{\zeta'(s)}{\zeta(s)}$ $\frac{1}{2\pi i} \sum_{\sigma - i\infty}^{\sigma + i\infty} x^s \frac{ds}{s} = (1, x > 1) |(0, x < 1)|(\frac{1}{2}, x = 1)$ $\begin{aligned} &-\frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{\zeta(s)}{\zeta(s)} x^s \frac{ds}{s} = \psi(x) \\ &\sigma > 1, \text{ since } \zeta \text{ blows up at } s = 1. \end{aligned}$

Remarkable, but typical complex analysis that this dose not depend on σ . We would like to move σ up to 1.

Key point to check: $\zeta(1+it) \neq 0$ $(t \neq 0 \text{ real})$

If f is a continuous function on Ω (open subset of \mathbb{C}), f is called holomorphic or analytic if it has derivatives at all $a \in \Omega$ $f'(a) = \lim_{k \to 0} \frac{f(a+k) - f(a)}{k}$ exists.

 $k \to 0$ from any direction, so this is a strong assumption. Difference between real and complex analysis: If f is hol. it has derivatives of all orders.

If Ω is connected, a hol. function on Ω is determined by its values near any point: analytic continuation.

If f, g holomorphic on Ω , f(x) = g(x) when $|x - a| < \epsilon \Rightarrow f = g$ on Ω . Holomorphic functions on Ω form a ring, but not a field. To get a field... f defined on Ω (except: allow a discrete set of exceptions called poles) is called meromorphic if $\forall a \in \Omega \ f(x) = (x - a)^k f_1(x) \ (k \text{ could be pos. or neg.})$ for x near a where $f_1(x)$ is holomorphic. $\frac{1}{x^{10}}$ is meromorphic un \mathbb{C} with a pole of order 10 at x = 0. If $f(a) \neq 0$, then k is called the order of f at a k > 0: zero of order k

k < 0: pole of order |k|

Meromorphic functions Ω form a field. $\sqrt{(x)}, \log(x), e^{\frac{1}{x}}$ have singularities at 0 not poles.

 $\zeta(s)$ is meromorphic on all of \mathbb{C} with only one pole at s = 0. If $\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$ meromorphic on all \mathbb{C} , poles at 0, -1, -2, ...Theorem(Riemann): $Z(s) = \prod_{i=1}^{-\frac{s}{2}} \Gamma(\frac{s}{2})\zeta(s)$ is mero on all \mathbb{C} , vih poles at s = 0, 1 (no others) and Z(s) = Z(1-s) (functional equation).

One Proof: Riemann Define $\theta(t) = \sum_{n=1}^{\infty} e^{-\pi n^2 t}$ From Fourier analysis, $\theta(t) = \frac{1}{\sqrt{t}}\theta(\frac{1}{t})$ $\frac{1}{2}(\theta(t) - 1) = \sum_{n=1}^{\infty} e^{-\pi n^2 t}$ $\prod_{n=1}^{-\frac{s}{2}} \Gamma(\frac{s}{2})\zeta(s) = \int_0^\infty \frac{1}{2} (\theta(t) - 1) t^{\frac{s}{2}} \frac{dt}{t}, \text{ valid if } re(s) > 1) \text{ (substitute series } \zeta(s) = \frac{1}{n^s}, \text{ evaluate term}$ by term). $\prod_{k=1}^{2} \Gamma(\frac{s}{2}) \zeta(s) = \frac{1}{s} + \frac{1}{1-s} + \int_{1}^{\infty} \frac{1}{2} (\theta(t) - 1) (t^{\frac{s}{2}} + t^{\frac{1-s}{2}}) \frac{dt}{t} \text{ (convergent for all } s \neq 0, 1)$ $\prod^{2} \Gamma(\frac{s}{2})\zeta(s) =$ $x - \sum_{n \in \{1, 2, n\}} \frac{x^{\rho}}{\rho} + \sum_{m=1}^{\infty} \frac{x^2 n}{2n} - \log(2\pi)$ (von Mangoldt) If the Riemann Hypothesis is true, $|\psi(x) - x| = O(x^{\frac{1}{2}ish})$ Proof: If $t \neq 0$ is real, $\zeta(1+it) \neq 0$ $\sigma_a(n) = \sum_{n=1}^{n} d^a$ $\sum_{\text{Take }a=it, b=-it}^{\frac{a_{l}n}{\alpha_{b}}} \frac{\zeta(s)\zeta(s-a)\zeta(s-b)\zeta(s-a-b)}{\zeta(2s-a-b)}$ $\sum_{n=1}^{\infty} \frac{|\sigma_{it}(n)|^2}{n^s} = \frac{\zeta(s)^2 \zeta(s-it)\zeta(s+it)}{\zeta(2s)}$ Assume $\zeta(1+it) = 0$, $\zeta(1-it) = \overline{\zeta(1+it)} = 0$ Both $\zeta(s+it), \zeta(s-it)$ have zeros, cancel pole of order 2 of $\zeta(s)^2$ at s=1Denominator $\zeta(2s)$ is given by a convergent series in $Re(s) > \frac{1}{2}$ and is not zero. $\zeta(2s) =$ $\prod \left(1 - \frac{1}{p^2 s}\right)^{-1} \text{ (paren nonzero if } Re(s) > \frac{1}{2}\text{)}$ $H(s) = \sum \frac{|\sigma_{it}(n)|^2}{n^s}$ If $s = \frac{1}{2}$, $\zeta(2s)$ has a pole, so actually, $H(\frac{1}{2})$ (Ingham, 1930)

This is impossible...

Suppose $\sum \frac{a_n}{n^s}$ is any Dirichlet series. If $\sigma_0 = inf\{\sigma | \sum \frac{a_n}{n^{\sigma}} < \infty\}$ Then σ_0 is the abscissa of convergence $H(s) = \sum \frac{|\sigma_{it}|^2}{n^s}$ is holomorphic on $Re(s) > \frac{1}{2}$. Series converges absolutely to the right of σ_0 ; diverges to left. σ_0 could be $-\infty$ to ∞ . For $\zeta(s)$, $\sigma_0 = 1$ If a_n as positive, $\sum \frac{a_n}{n^s} = H(s)$ is (for real s) monotone decreasing to the right of σ_0 if $\sigma_0 \neq \infty$. σ_0 is a singularity (pole). Since H(s) is analytic to the right of $\frac{1}{2}$, $\sigma_0 \leq \frac{1}{2}$ and $\lim_{s \to \frac{1}{2}} H(s) = 0$ is holomorphic.