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R(n) = 4
∑
d|n

χ(d)

χ(n) = 0→ 0, 1→ 1, 0→ 2,−1→ 3
R(n) = # of reps of n by x2 + 5y2 or 2x2 + 2xy + 3y2

Last time classified Gaussian primes.
Recall a prime in R = Z[i] is an irreducible element, except that associates determine the same
prime.
Alternatively, let α ∈ R, α = Rα = all multiples of α. Only depends on class of associates of α.
R = Z[i] ⊂ Q(i) = Q[i] A prime is an ideal represented by an irreducible. (Actually, I prime
means that R/I is an integral domain - for Z or R, this would be a field.)
Failing factorization remedied by looking at IDEALS.
2 = I2, 3 = P1P2

IP1 = (I +
√
−5), IP2 = I −

√
5

Gaussian primes: 1 + i, norm 2
p ≡ 1 mod 4 p = a2 + b2 (Fermat) ⇒ a+ bi, a− bi primes.
p ≡ 3 mod 4 ⇒ p remains prime in R. (one prime of norm p)

ζ(s) = η(s) =
∑ 1

n2
=
∏
p

(1− 1

p2
)−1 (Euler Product)

Everything convergent if s > 1

Generalization Time!

L(s, χ) =
∑
n

χ(n)

n2
=
∏
p

(1− χ(p)

ps
)
−1

(Useful for proving infinitely many primes within arithmetic progressions.)

Let Z(s) =
∑

Ideals of R

1

N(I)s
=

∏
prime ideals π

(
1− 1

N(π)s

)−1

This is the Dedekind zeta function.
Proof same: Use unique factorization in R.

Z(s) = 1
4

∑
a,b∈Z, not both 0

1

(a2 + b2)s

(The ideal I can be represented as a+ bi in four ways.)
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Z(s) = 1
4

∑
n

R(n)

ns∏
prime Ideals P of R

(1− 1

NP s
)−1

Z(s) = (1− 1
2s )−1

( ∏
p≡3 mod 4

(1− 1

ps
)−1

)( ∏
p≡1 mod 4

(1− 1

p2s
)−1

)

Z(s) = (1− 1
2s )−1

( ∏
p≡1 mod 4

(1− 1

ps
)−1(χ(p)− 1

ps
)−1

)( ∏
p≡3 mod 4

(1− 1

ps
)−1(χ(p)− 1

ps
)−1

)

=
∏
p

(1− 1

ps
)
−1∏

p

(χ(p)− 1

ps
)
−1

= ζ(s)L(s, χ)

1
4

∑
n

R(n)

ns
= Z(s) = ζ(s)L(s, χ)

=
∑
d,k

χ(d)

(kd)s

=
∑
n

1

n2

∑
d|n

χ(d) Compare coefficients of

Moebius function, Moebius inversion
Often we sum over divisors of n.
f : Z+ → C
g(n) =

∑
d|n

f(d), e.g.
∑
d|n

φ(d) = n

Theorem: If g(n) =
∑
d|n

f(d), then f(n) =
∑
d|n

µ(d)(
n

d
) =

∑
d|n

µ(
n

d
) · g(d)

where µ(d) = 0 unless d is squarefree, (−1)k if d is a product of k distinct primes.
µ(1) = −1, 2→ −1, 3→ −1, 4→ 0, 5→ −1, 6→ 1
φ(6) = 6− 3− 2 + 1 = 2

Proof: Consider
∑ f(n)

ns
(hope it converges)

ζ(s)
∑ f(n)

ns
=

(∑
k

1

ks

)(∑
d

f(d)

ds

)
=
∑
d,k

f(d)

(kd)s
=
∑
n

1

ns

∑ 1

n2

∑
d|n

f(d) =
∑ 1

ns
g(n)

ζ(s) =
∏
p

(1− 1

ps
), expand:

∑ µ(n)

ns∑ f(n)

ns
=

1

ζ(s)

∑ g(n)

ns
=

(
∞∑
d=1

µ(d)

ds

)(
∞∑
k=1

g(k)

ks

)

=
∑
n

1

ns

∑
k,d

µ(d)g(k) =
∑
N

∑
d|n

µ(d)g(
n

d
)

n−s

µ, like φ, is multiplicative.
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Often, but not always, Moebius inversion is applied where f is multiplicative.

Lemma: f, g multiplicative ⇒ so is h(n) =
∑
d|n

f(d)g(
n

d
). (“Convolution”)

(If in MIF (Moebius inversion formula), g is multiplicative ⇔ f is multiplicative.)
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