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A binary quadratic form is f(x, y) = ax2 + bxy + cy2 (a, b, c ∈ Z)
Studied by Gauss, who introduced the notion of class numbers h(d) where d is some discriminant.
d = b2− 4ac is called the discriminant of f . You can change the quadratic form by a linear change
of variables.
x = mx′ + ny′

y = tx′ + uy′

This change of variables multiplies d by (mu− nt)2

Best kind of variable change: (mu− nt) = 1⇒ d discriminant unchanged (unimodular change of
variables).
f(x, y) = a′(x′)2 + b′x′y′ + c′(y′)2, where (b′)2 − 4a′c′ = (mu− nt)2(b2 − 4ac)
Proof:
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f(x, y) = ξtQξ
= (Mξ′)tQ(Mξ′)
(ξ′)tM tQMξ′ (call M tQM = Q′))
det(Q) = 1

4
(b2 − 4ac) = −d

4

Two binary quadratic forms f and f ′ are considered equivalent if they are related by a unimodular
change of variables.
f(x, y) = f ′(x′, y′)
x = mx′ + ny′, y = tx′ + uy′

m,n, t, u ∈ Z,mu− nt = 1
In this case they have the same discriminant d = b2 − 4ac = (b′)2 − 4a′c′

Same Discriminant 6⇒ equivalent. Example:
2x2 + 2xy + 3y2 and x2 + 5y2 doth have d = −20, but not equivalent.
The number of BQFs with discriminant d is called a class number h(d)
h(−20) = 2. This is related to the failure of unique factorization in the ring Z[

√
−5]

Read 3.4 and 3.5

Representations by sum of squares.
Let r(m) = #(x, y) ∈ Z2|x2 + y2 = n
(r(0) = 1, IGNORE)
r(1) = 4 ((±1)2 + 02, 02 + (±1)2)
r(2) = 4
r(3) = 0
r(4) = 4
r(5) = 8
If x2 + y2 = n is a solution, then associate x+ iy ∈ R = Z[i] in the Gaussian integers.
n = N(x+ iy); z = x+ iy have four different solutions corresponding to z, iz,−z,−iz{εZ|ε ∈ R×}
(R× units ±1,±i)
Special case r(p), p odd prime. In this case, claim:
r(p) = 8 if p ≡ 1 mod 4
r(p) = 0 if p ≡ 3 mod 4

Claim: If p ≡ 1 mod 4, there are two Gaussian primes dividing p. (π, π′ are associates, π′ = επ, ε
a unit). Think of these as representing the same primes.
5 = (1 + 2i)(1− 2i) (distinct Gaussian primes dividing 5)
Proposition: If p ≡ 1m4 prime in Z (⇒ by Fermat, p = a2 + b2). p = ππ = (a+ bi)(a− bi) where
π is a Gaussion prime. π, π are not associative but any Gaussian prime dividing p is (an associate
of) π or π′

Remark: If κ ∈ R, N(κ) prime in Z ⇒ κ is prime in R = Z[i]
(However, this is not ⇔ since 3 is prime in R but N(3) = 9q is not prime in Z.)
Proof of remark: Ifκ = κ1κ2 ⇒ N(κ) = N(κ1)N(κ2)⇒ N(κ1) or N(κ2) = 1⇒ κ1 or κ2 is a unit.
Proof of proposition:
If κ is a prime dividing p (κ|p), then κ|ππ (Note π, π are prime by remark, N(π) = a2 + b2 = p)
So κ|π or κ|π′
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κ, π prime ⇒ κ is an associate of π or π′

Define χ(n) =
0(n even)
1(n ≡ 1 mod 4)
−1(n ≡ 3 mod 4)

i.e. ξ(n) = (−1
2

) (“Kronecker Symbol”)

Theorem: r(n) = 4
∑
d|n

χ(d)

Proof: 1
4

 ∑
nonzero Gaussian integers

1

N(d)2
= Z(R)

 (s some complex number re(s) > 1 will

guarantee convergence.)
(1/4 accounts for α, iα,−α,−iα having same norm.)

Z(R) =
∑

ideals I of R

1

NIs
(Dedekind zeta function of R)

Every ideal is of the form (α) = all multiples of α because R is a principal ideal domain.
(α) = (β)⇒ α = εβ (ε ∈ R×). Passing to ideals removes need to divide by 4.
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Every ideas has a unique factorization into ideals. This means... ξ first. Ideals of Z are (n) with
n > 0 and each has a unique factorization into primes.
∞∑
n=1

1

ns
=
∏
p

(1− 1

ps
)
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Because RHS =
∏
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+ ...) (multiplying out gives each 1

n2 exactly once.)

1
1−x = 1 + 1x+ x2 + ...

ξ(s) =
∑

n−s =
∏
p

(1− p−s)−1

1
4

∞∑
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r(n)n−s = Z(s) =
∏
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NP s
)−1 (1

4
r(n) = # of ideals with norm N(I) =

n)
Prime ideals of R:
One ideal (1 + i) with N(P ) = 2
Two ideals (a+ bi), (a− bi) with NP = p, p ≡ 1 mod 4 with NP = p2, p ≡ 3 mod 4
(N(P ) = N(α) with P = (α))
One ideal (p)
2, 3, 1 + 2i, 1− 2i, 7∏
prime Ideals P of R
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)−1
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( ∏
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)
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∏
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