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On webpage:

Lecture notes from Tuesday
Statement about Midterm
Next (short homework)

A binary quadratic form is f(x,y) = ax® + bxy + cy? (a,b,c € Z)

Studied by Gauss, who introduced the notion of class numbers h(d) where d is some discriminant.
d = b? — 4ac is called the discriminant of f. You can change the quadratic form by a linear change
of variables.

x =mx + ny

y =t + uy

This change of variables multiplies d by (mu — nt)?

Best kind of variable change: (mu — nt) = 1 = d discriminant unchanged (unimodular change of
variables).

flz,y) = d (@) +Vz"y + ¢(y)?, where (1) — 4d'¢’ = (mu — nt)*(b* — 4ac)

Proof:

b
ax? + bry + cy? = (z,y) Cbl 2 *
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(( v o2 ) = Q)
fa,y) = £Q¢
= (M&)'Q(M¢E)
(€)M QME (call M'QM = Q')
det(Q) = 1(b* — dac) = —4¢

Two binary quadratic forms f and f’ are considered equivalent if they are related by a unimodular
change of variables.

flzy) = (2 y)

xr=mz +ny,y =t +uy

m,n,t,u € Z,mu—nt =1

In this case they have the same discriminant d = b* — dac = (V')* — 4a'¢
Same Discriminant # equivalent. Example:

222 + 2xy + 3y? and 22 + 5y? doth have d = —20, but not equivalent.
The number of BQFs with discriminant d is called a class number h(d)

h(—20) = 2. This is related to the failure of unique factorization in the ring Z[v/—5]

Read 3.4 and 3.5

Representations by sum of squares.
Let 7(m) = #(x,y) € Z*|2* +y* =n
(r(0) =1, IGNORE)

r(1) =4 ((£1)* + 0%, 0* + (£1)?)

r(2) =4
r(3) =0
r(4) =4
r(b) =8

If 2% + y? = n is a solution, then associate x + iy € R = Z[i] in the Gaussian integers.

n = N(x+1y); 2 = x + iy have four different solutions corresponding to z,iz, —z, —iz{eZ|e € R*}
(R* units £1, £1)

Special case r(p), p odd prime. In this case, claim:

r(p) =8 if p=1mod 4

r(p) =0if p =3 mod 4

Claim: If p = 1 mod 4, there are two Gaussian primes dividing p. (7,7’ are associates, 7’ = e, €
a unit). Think of these as representing the same primes.

5= (14 2i)(1 — 2:¢) (distinct Gaussian primes dividing 5)

Proposition: If p = 1m4 prime in Z (= by Fermat, p = a®> + b?). p = 77 = (a + bi)(a — bi) where
7 is a Gaussion prime. 7,7 are not associative but any Gaussian prime dividing p is (an associate
of) m or 7/

Remark: If k € R, N(k) prime in Z = & is prime in R = Z]i]

(However, this is not < since 3 is prime in R but N(3) = 9¢ is not prime in Z.)

Proof of remark: Ifx = k1ky = N(k) = N(k1)N(k2) = N(k1) or N(k2) =1 = K; or Ky is a unit.
Proof of proposition:

If x is a prime dividing p (k|p), then x|77 (Note 7,7 are prime by remark, N () = a® + b*> = p)
So k|m or k|m’



k,T prime = k is an associate of w or 7’

Define x(n) =

0(n even)

I(n =1 mod 4)

—1(n =3 mod 4)

ie. &(n) = (_71) (“Kronecker Symbol”)

Theorem: r(n) = 42 x(d)
dn

1
Z = Z(R) | (s some complex number re(s) > 1 will

Proof: N{d)?

1

4
nonzero Gaussian integers

guarantee convergence.)

(1/4 accounts for a,ia, —a, —ia having same norm.)

1
Z(R) = | Z NTs (Dedekind zeta function of R)
ideals I of R
Every ideal is of the form («) = all multiples of o because R is a principal ideal domain.
() = (B) = a = €0 (e € R*). Passing to ideals removes need to divide by 4.

1 =1
E(R) = . Z NIs Z ns
ideals I of z n=1
Every ideas has a unique factorization into ideals. This means... £ first. Ideals of Z are (n) with

n > 0 and each has a unique factorization into primes.
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1 1
Because RHS = H(l + — + —- +...) (multiplying out gives each - exactly once.)
p* ps "
p
L =141z +22+..
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%LZT(”)”_S = Z(s) = H (1- NP8)_1 (ir(n) = # of ideals with norm N(I) =
n=1 prime Ideals P of R

n)

Prime ideals of R:

One ideal (1 4+ ¢) with N(P) =2

Two ideals (a + bi), (a — bi) with NP =p, p=1mod 4 with NP = p* p=3mod 4
(N(P) = N(a) with P = («))

One ideal (p)

2,3,1+2i,1—2i,7

15
H (1_NPS)

prime Ideals P of R
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p=1 mod 4







