Math 152 Notes

Lucas Garron

November 3, 2009

20091103

Midterm: Nov. 12 Sums of Two Squares Special Case of binary quadratic form BQF: If $a, b, c \in \mathbb{Z}$ $ax^2 + bxy + cy^2$ is a binary quadratic form Their theory is closely related to the field $\mathbb{Q}(\sqrt{D})$ $(D = b^2 - 4ac)$ (could be \pm), case D > 0 easier. Case $ax^2 + xbxy + cy^2 = 0$ (D = -4) $\mathbb{Q}(\sqrt{D}) = \mathbb{Q}(\sqrt{-4}) = \mathbb{Q}(i)$ $(i = \sqrt{-1})$ Inside $\mathbb{Q}(i)$ is the ring of Gaussian integers, $R = \mathbb{Z}[i]$ $\mathbb{Q}(i) = \{a + bi|a, b \in \mathbb{Q}\}$ $\mathbb{Z}[i] = \{a + bi|a, b \in \mathbb{Z}\}$ (In field theory, if F is a field, R a ring, K is a bigger field $\supset F, R, x \in K, F(x) = \{$ smallest field containing $F, x\}, R[x]$ smallest ring containing R, x $\mathbb{Q}(i) = \mathbb{Q}[i], \mathbb{Q}[\pi] \neq \mathbb{Q}(\pi)$)

Review from Thursday: Theory of the norm. F any field, $D \in F^{\times} \neq 0$, not a square in F. D is a square in $K = F(\sqrt{D})$. This is constructed the same way as \mathbb{C} given \mathbb{R} $F(\sqrt{D}) = F[\sqrt{D}] = \{a + d\sqrt{D} | a, b \in F\}$ "Obvious" ring operations. It is a field, it is a 2-D vector space over F. $\frac{1}{a+b\sqrt{D}} = \frac{a-b\sqrt{D}}{a^2-b^2D}$, hence a field (denom $\neq 0$ if a, b not both 0 because D not a square root in F) $x^2 - Dy^2 = (x + y\sqrt{D})(x + y\sqrt{D}) = N(x + y\sqrt{D})$ (LHS binary Q.F. in a, b)

 $\underline{\operatorname{Ex. 1}} (D = -1)$ $x^2 + y^2 = (x + iy)(x - iy) = N(x + iy) (N : K \to F \text{ norm map})$ N(zw) = N(z)N(w) (*) $\tau(x + iy) = x - iy (complex conj.): \tau(zw) = \tau(z)\tau(w) (also addition)$ $General case: <math>\tau : K \to K$ $\tau(x + y\sqrt{D}) = x - y\sqrt{D}$ $\tau(zw) = \tau(z)\tau)w (mult both sides by zw gives (*))$

Ex. 1 shows that binary quadratic forms $ax^2 + bxy + cy^2$ with b = 0 are sometimes norms from quadratic fields.

But b = 0 is unimportant, and in general, the theory of binary quadratic forms (developed by Gauss) is the same as the theory of quadratic fields $\mathbb{Q}(\sqrt{D}), D \in \mathbb{Z}, D$ nonsquare

 $\begin{array}{l} \underline{\text{Ex. } 2: \ x^2 + xy + y^2 a \text{ BQY with } b \neq 0} \\ \rho = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{-3}}{2} \\ \rho^2 = e^{\frac{4\pi i}{3}} = -\frac{1}{2} - \frac{\sqrt{-3}}{2} \\ \sqrt{-3} = \rho - \rho^2 \\ \rho^2 + \rho + 1 = 0 \\ \mathbb{Q}(\rho) = \mathbb{Q}(\sqrt{-3}); \text{ compute norm of } x + y\rho \\ \tau : K \to K, \ \tau(x + y\sqrt{-3}y) = x - \sqrt{-3}y \\ \tau(\rho) = \rho^2 \\ N(x + y\rho) = (x + y\rho)(x + y\rho^2) = x^2 + (\rho + \rho^2)xy + y\rho^2 = x^2 - xy + y^2 \\ N(x - y\rho) = x^2 + xy + y^2, \text{ so any BQR with } D = b^2 - 4ac \text{ nonsquare is related to a norm.} \\ \text{Caveat: } ax^2 + bxy + cy^2 \end{array}$

Questions: Which integers can be expressed as a sum of two squares? First observation: $(x^2 + y^2)(z^2 + w^2) = t^2 + u^2$ for suitable t, u t = (xz - yw), u = (xw - yz)Underlying reason: $N(z_1)N(z_2) = N(z_1z_2)$ $(z_1 = x + iy, z_2 = z + iw)$ $(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = (z_1^2 + z_2^2 + z_3^2 + z_4^2)$ for suitable z_1, z_2, z_3, z_4 (similar explanation using quaternions) So if u, v are sums of two (or four) squares, so is uv.

So if u, v are sums of two (or four) squares, so is uv.

Thm: p prime is a sum of 2 squares $\Leftrightarrow p = 2 = 1^1 + 1^2$ or $p \equiv 1 \mod 4$ Proof: If $p \equiv 3 \mod 4$, p is not a sum of two squares since $u^2 = 0$ or 1, $u^2 + b^2 = 0, 1, 2$

Fermat: If $p \equiv 1 \mod 4$, then pisasum of 2squares

The Gaussian integers are a ring where unique factorization result is true.

Lemma: If $a, b \in R = \mathbb{Z}[i], b \neq 0 \Rightarrow a = bq + r, |r| < |b|$

Consider $R \cdot b =$ square lattice with vertices at $(x + iy)b, x, y \in \mathbb{Z}$