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Count solution points to ax2 + by2 = over Zp (p odd).
d = −ab
(ax)2 + aby2 = a
(ax)2 − dy2 = a; make var change: x→ ax
x2 − dy2 = a; assume a, b 6= 0 in Zp, so d 6= 0.
Two cases:
If d is a square (i.e. (−ab

p
) = 1)

There will be p− 1 elements.
d = c2, x2 − (cy)2 = a, c 6= 0
(x− cy)(x+ cy) = a
u = x− cy, v = x+ cy
x = (u+ v)/2, y = 1

2c
(v − u)

uv = a; There are p− 1 solutions:
u 6= 0 and v = a

u
, p− 1 possibilities.

Let F be any field, d ∈ F a non-square.
Examples:
F = R, d = −1
F = Zp, d any QNR (p prime)
Claim: ∃ a bigger field K ⊃ F where d has a square root.
Let K be all formal linear combinations {a+ b

√
d|a, b ∈ F}

(a+ b
√
d)(a′ + b′

√
d) = a′′ + b′′

√
d

This would produce a ring even if d is a square.
Why is this a field?
Q = a 6= a+ b

√
d (so a, b not both 0)

Claim: a−b
√

d
a2−b2d

is an inverse: denominator is never 0 (else a2 − b2d = 0 ⇒ d = (a
b
)2, contradicting

assumption of no square root in F ).

There is a map N : K → F “norm” map, N(xy) = N(x)N(y) multiplicative:
N(a+ b

√
d) = a2 − b2d

N(a+ b
√
d) = (a+ d

√
d)(a− b

√
d)

(N(x) = x · x, a+ b
√
d = a− b

√
d)

x+ y = x+ y, xy = x · y (A “Galois Automorphism”)
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Essentially: Since −
√
d is another square root of d, we can substitute it without changing the

addition and multiplication.
So N(xy) = xyxy = xyxy = xxyy = N(x)N(y).

Take F = Zp, d a nonsquare.

K = F (
√
d) - we’ve constructed a field with p2 elements.

This is not Z/p2Z (which would not be a field).

Theorem: If K is a any field with q elements (q <∞), then K× is cyclic of order q − 1.
Observe if f(x) is any polynomial of degree d, then f has ≤ d roots (true for any field, e.g. K)
Claim: If d|q − 1 then xd − 1 has exactly d roots in K. It has ≤ d roots, and cannot have more...
xq−1 = 0 has exactly q − 1 roots.
(Analog of Fermat’s Theorem) since X× is a group of order q − 1, so everey element satisfies
xq−1 = 1, i.e. is a root of xq−1 − 1
If xd−1 had < d roots, then xq−1−1

xd−1
= xq−d−1+xq−2d−1+...+1 (would have > (q−1)−(q−1−d) = d

roots, a contradiction)

Claim: # of X ∈ K× having order d (where d|q − 1) is exactly φ(d)
ψ(d) = # of x ∈ K× with order exactly d, xd − 1 = 0 ⇔ order r of x (ψ(r) of these) divides d
giving equation. (r = smallest r withxr = 1)

So
∑
r|d

ψ(r) = d,
∑
r|d

φ(r) = d

If d is the smallest divisor of q − 1 such that ψ(d) 6= φ(d) ⇒ φ(d) = d −
∑

r|d,r<d

ψ(d) = d −∑
r|d,r<d

φ(d) =

(induction hypothesis)φ(d)

So there are φ(q − 1) elements of order q − 1, ⇒ K× cyclic.

Theorem: IF d is notn a square in Zp and d 6= 0, then x2 − dy2 = a has exactly p + 1 solutions.
(Sanity check: p2 − 1 choices for x, y (not both 0), p− 1 choices for a and (p− 1)(p+ 1) = p2 − 1)
K× = multiplicative group of K = F (

√
d) F = Zp is cyclic of order p2 − 1. Let g be a generator.

F× = a cyclic subgroup of order p− 1
Lemma: gh ∈ F× ⇔ p+ 1|k (gp+1 generates a cyclic group of order p2−1

p+1
= p− 1)

A cyclic group of order n has exactly m elements that satisfy xm = 1, where m is any divisor of
G. If g is a generator of G, g

n
m generates a cyclic subgroup of G of order m and this is the unique

such subgroup.
If G = K×, n = p2 − 1,m = p− 1, n

m
= p+ 1 this subgroup is F×.

Theorem: x→ x maps x→ xp, a+ b
√
d = a− b

√
d

Proof: Let f(x) = xp

F (xy) = f(x) + F (y), f(xy) = f(x)f(y) (expand binomial cofficients: f(x + y) = (x + y)p =
xp + (0 in Zp) + yp = xp + yp = f(x) + f(y))
And f(x) = x if x ∈ F by Fermat, xp = x in Zp = F

Observe f(
√
d) = −

√
d since if f(

√
d) = λ, (

√
d)2 = d, so f(

√
d)2 = f(d) =

d∈F
d

So f(
√
d) is another square root of d.It can’t be

√
d since then f would be the identity map so

xp = x would have p4 roots.
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f(x) = xp (def.)
f(x+ y) = f(x) + f(y)
f(xy) = f(x)f(y)
f(x)− x⇔ x ∈ F
If f(
√
d) =

√
d, we would have

√
d ∈ F , contradiction.

So f(−
√
d) = other square root f(

√
d) = −

√
d.

f(a+ b
√
d) = f(a) + f(b)f(

√
d) = a+ b(

√
d) = a− b

√
d = a+ b

√
d

x ∈ F×
N(x) = xx = x · xp = xp+1

This homomorphism maps g (gen. of K×) to gp+1 (gen. of F×)
Claim: If a ∈ F×, X2 − dy2 has exactly p+ 1 solutions (x, y)
x−
√
dy = Z equation becomes N(Z) = a or Zp+1 = a. This has exactly p + 1 roots in K. This

is a fact about cyclic groups, or argue as follows:
µ(a) = # of roots of Kp+1 = a with Z ∈ K×
Zp+1 = N(Z) ∈ F× for any Z ∈ K×

So
∑

a∈F×

µ(a) = |K×| = p2 − 1∑
a∈F×

µ(a) = p2 − 1, so µ(a) = p+ 1 ∧ a

µ(a) ≤ p+ 1 since poly xp+1 − a = 0 has ≤ p+ 1 roots.

( 104513
3446111

)
104513 ≡ 1 mod a,≡ 1 mod 8
= (344611

104513
) = ( 31072

104513
)

= ( 25

104513
)( 971

104513
) = ( 971

104513
)

= (104513) = (616
971

) = ( 23

971
)( 77

971
) (971 ≡ 3 mod 8, ( 2

971
) = −1)

= −( 77
971

) = −(971
77

) = (47
77

) = −(77
47

) = −(30
47

) = −(15
47

) = (47
15

) = ( 2
15

) = 1
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