Math 152 Notes

Lucas Garron

October 27, 2009

20091027

Question: If m is composite, how many solutions to $x^2 \equiv a \mod m$ are there? Assume m odd (for simplicity). By CRT if $m = m_1 m_2$, m_1 , m_2 coprime, then # of sols to $x^2 \equiv a \mod m =$ product of the # of sols for m_1 and m_2 . Reduced to the case $m = p^k$ (assume p odd). Claim: If x_1 is a solution to $x^2 \equiv a \mod p^j \ (j \ge 1)$ There is a unique $x_{j+1} \mod p^{j+1}$ solving $x^2 \equiv a \mod p^{j+1}$ Proof of claim: $x_j^2 \equiv a \mod p^j$ so let $x_j^2 \equiv a + \lambda p^j \mod p^{j+1}$ such that $x^{j+1} \equiv x_j \mod p^j$ Let us ask for a condition of μ $(0 \le \mu < p)$ such that $(x_j + \mu p^j)^2$ is a solution to $x^2 \equiv a \mod p^{j+1}$ $x_j^2 + 2\mu p^j + \mu^2 p^2 j \equiv a + \lambda p^j + 2\mu p^j \mod p^{j+1}$ Need $(\lambda + 2\mu)p^j \equiv \mod p^{j+1}$ or $\lambda + 2\mu \equiv 0 \mod p$ There is a unique $\mu \mod p$. Therefore, there is a unique $x_i + 1 \mod p^{j+1}$ Hensel's Lemma: If $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ has a root $f(x_1) \equiv 0 \mod p^j$ AND $f'(x_2) \not\equiv 0$ $0 \mod p \Rightarrow \exists x_{j+1} \mod p^{j+1}$ such that $x_{j+1} \equiv x_j \mod p^j$ and $f(x_{j+1}) \equiv 0 \mod p^{j+1}$ Proposition: $\binom{2}{p} = 1$ if $p \equiv \pm 1 \mod 8$, -1 if $p \equiv \pm 3 \mod 8$ Proof: $\left(\frac{2}{n}\right) = (-1)^n, n = \#of2, 4, \dots, 2\left(\frac{p-1}{2}\right)$ (i.e. 2, 4, ..., p-1) whose least res. mod p is $> \frac{p}{2}$ = # of i in 1, 2, ..., $\frac{p-1}{2}$ such that $2i > \frac{p}{2}$, $\frac{p}{4} < i \le \frac{p-1}{2}$, i.e. $\frac{p}{4} < i < \frac{p}{2}$. So $n = [\frac{p}{2}] - [\frac{p}{4}]$ Observe that the parity of $[\frac{p}{2}] - [\frac{p}{4}]$ only depends on $k \mod 8$. $k \equiv 1 \mod 8 \to \begin{bmatrix} 1\\2 \end{bmatrix} - \begin{bmatrix} 1\\4 \end{bmatrix} = 0 \quad k \equiv 3 \mod 8 \to \begin{bmatrix} 3\\2 \end{bmatrix} - \begin{bmatrix} 3\\4 \end{bmatrix} = 1 \quad k \equiv 5 \mod 8 \to \begin{bmatrix} 5\\2 \end{bmatrix} - \begin{bmatrix} 5\\4 \end{bmatrix} = 1$ $k \equiv 7 \mod 8 \rightarrow \left[\frac{7}{2}\right] - \left[\frac{7}{4}\right] = 2$ Conclusion: n is odd if $p \equiv 3$ or 5 mod 8, even if $p \equiv 1$ or 7 mod 8 Call this $\chi(k)$. It's a Dirichlet character: $\chi(ab) = \chi(a)\chi(b)$ Given any $a \exists$ a Dirichlet character χ_a such that $\left(\frac{a}{p}\right) = \chi_a(p)$ for odd primes p. m = 8 if a = 2 $\chi(c+m) = \chi(c)$ $\chi(cb) = \chi(c)\chi(b)$ $\chi(c) = 0$ if (m, c) = 1

Consider the primes 37747 and 17729. $\left(\frac{17729}{37747}\right) = \left(\frac{37747}{17729}\right)$ (because 17729 $\equiv 1 \mod 4$) $\left(\frac{2289}{17729}\right)$ (37747 $\equiv 2289 \mod 17729$) $= \left(\frac{3}{17729}\right)\left(\frac{7}{17729}\right)\left(\frac{109}{17729}\right)$

$$= \left(\frac{17729}{3}\right)\left(\frac{17729}{77}\right)\left(\frac{17729}{109}\right) \text{ (due to } \equiv 1 \text{ above again)}$$

$$= \left(\frac{2}{3}\right)\left(\frac{5}{7}\right)\left(\frac{71}{109}\right)$$

$$= \left(-1\right)\left(-1\right)\left(1\right)$$

$$= 1$$

$$\left(\left(\frac{2}{3}\right) = -1, \left(\frac{5}{7}\right) = \left(\frac{7}{5}\right) = \left(\frac{2}{5}\right) = -1\right)$$

$$\left(\left(\frac{71}{109}\right) = \left(\frac{109}{71}\right) = \left(\frac{38}{71}\right) = \left(\frac{2}{71}\right)\left(\frac{19}{71}\right) = -\left(\frac{71}{19}\right) = -\left(\frac{2}{19}\right)\left(\frac{7}{19}\right) = -\left(-1\right)\left(\right) = \left(\frac{7}{19}\right) = -\left(\frac{5}{7}\right) = -\left(\frac{7}{5}\right) = -\left(\frac{7}{5}\right) = -\left(\frac{2}{5}\right) = 1\right)$$
Thus, $\exists x \text{ s.t. } x^2 \equiv 17729 \text{ mod } 37747$

Jacobi Symbol: defined for $\left(\frac{p}{q}\right)$, p, q odd, coprime (else $(p,q) > 1 \Rightarrow \left(\frac{p}{q}\right) = 1$) If q is prime, it is the Legendre symbol. It has some of these properties: $\left(\frac{p_1p_2}{q}\right) = \left(\frac{p_1}{q}\right)\left(\frac{p_2}{q}\right), \left(\frac{p}{q_1q_2}\right) = \left(\frac{p}{q_1}\right)\left(\frac{p}{q_2}\right)$ $p_1 \equiv p_2 \mod q \Rightarrow \left(\frac{p_1}{q}\right)\left(\frac{p_2}{q}\right)$

 $p_1 \equiv p_2 \mod q \Rightarrow \left(\frac{p_1}{q}\right) \left(\frac{p_2}{q}\right)$ $\left(\frac{p}{q}\right) = \pm \left(\frac{q}{p}\right)$ where the sign is + if $p \equiv 1 \mod 4$ or $q \equiv 1 \mod 4$, - if $p \equiv q \equiv 3 \mod 4$ $\left(\frac{2}{q}\right)$ as before.

Big difference: If q is not prime, $\binom{p}{q}$ does not detect whether p is a Q.R. modp $\left(\frac{2}{3\cdot5}\right) = \left(\frac{2}{3}\right)\left(\frac{2}{5}\right) = (-1)^2 = 1$ But 2 is not a Q.R. mod15 (nor 3, 5). Definition: If we factor Q into odd primes, $Q = q_1...q_r$ $\left(\frac{p}{Q}\right) = \prod \left(\frac{p}{q_i}\right)$ (Legendre symbols) Proposition: $\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}}$ (1 if $Q \equiv 1 \mod 4$, -1 if $Q \equiv 3 \mod 4$) $\left(\frac{2}{q}\right) = (-1)^{\frac{Q-1}{2}}$ (= 1 if $Q \equiv \pm 1 \mod 8$, -1 if $Q \equiv \pm 3 \mod 8$) Proof: Define $\chi_4(a) = 1$ if $a \equiv \pm 1 \mod 4$, -1 if $a \equiv \pm 3 \mod 4$, $\chi_8(a) = 1$ if $a \equiv \pm 1 \mod 8$, -1 if $a \equiv \pm 3 \mod 4$, $\chi_4(a) = \chi_8(a) = 0$ if a is even. Both are multiplicative.

 $\begin{pmatrix} \frac{-1}{Q} \end{pmatrix} = \prod \left(\frac{-1}{q_i}\right) = \prod \chi_4(q_i) = \chi_4(\prod q_i) = \chi_4(Q) \\ \begin{pmatrix} \frac{p}{q} \end{pmatrix} \begin{pmatrix} \frac{q}{p} \end{pmatrix} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} = \chi_4(p)^{\frac{q-1}{2}} = \chi_4(q)^{\frac{p-1}{2}} \\ \text{Def } M(a,b) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} (M(a,b) = 0 \text{ if either argument is even}) \\ M \text{ is bilinear. In this context, this means } M(a_1a_2,b) = M(a_1,b)M(a_2,b) \text{ (same over second arg)} \\ \text{Can check cases } b = 1 (M(a_1a_2) = 1M(a_1,b)M(a_2,b)), \ b = 3 \text{ (use } \chi_4)$

Theorem: If
$$p$$
 and q are odd, coprime, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = M(P,Q)$
 $(P,Q)\left(\frac{Q}{P}\right) = \prod_{i,j} \left(\frac{p_i}{q_j}\right)\left(\frac{q_j}{p_i}\right) = \prod_{i,j} M(p_i,q_j) = \prod_i M(p_i,\prod_j q_j) = M(\prod_i p_i,\prod_j q_j) = M(P,Q)$