Math 152 Notes

Lucas Garron

October 20, 2009

20091020

When are two polynomials equivalent (or congruent)?

 $x^p - x \equiv 0 \bmod p \forall x \in \mathbb{Z}$

 $x^p - x \equiv 0 \forall x \in \mathbb{Z}_p$

 $x^p - x$ in ring $\mathbb{Z}_p[x]$ is NOT zero.

 $x^p - x \equiv 0 \mod p$ is not a congruence of polys.

 $x^p - x = 0$ for all $x \in \mathbb{Z}_p$

 $\mathbb{Z}_p \subset$ larger fields with p^r elements for any r

 $\mathbb{Z}_p[x]$ polynomial ring is a unique factorization domain. So you can define ideals, factor into irreducibles, etc. You would lose this algebra if you declare $x^p - x = 0$.

p an odd prime.

If GCD(a, p) = 1 we call a a quadratic residue if $x^2 \equiv a \mod p$ has a solution x = b. Then x = -b is also a solution, so the equation has exactly two solutions.

If $c^2 \equiv a \mod p$, $c^2 \equiv b^2 \Rightarrow (c-b)(c+b) = c^2 - b^2 \equiv 0 \Rightarrow c = \pm b$ (c, b are the only roots).

 $Ax^2 + Bx + C \equiv 0$ will have roots

 $\Rightarrow D = B^2 - 4AC \equiv 0 \mod p \text{ or } D \text{ is a QR.}$ Work in \mathbb{Z}_p ; $Ax^2 + Bx + C \equiv 0 \left(\frac{B^2 - AC}{4A}\right) + A(x - \frac{B}{2A})^2 = Ax^2 + Bx - \frac{B^2}{4A} - \left(\frac{B^2 - AC}{4A}\right) = Ax^2 + Bx + C.$ This is zero $\Rightarrow (x - \frac{B}{2A})^2 = \frac{D}{4A^2}.$ So D must be a square modp, i.e. a QR.

<u>Euler's criterion</u>: Let GCD(a, p) = 1. Then a is a QR $\Rightarrow a^{\frac{p-1}{2}} \equiv 1 \mod p$. Observe: In any case $a^{\frac{p-1}{2}} \equiv \pm 1$ because if $a^{\frac{p-1}{2}} = \lambda$, $\lambda^2 = a^{p-1} \equiv 1 \mod p \Rightarrow x \equiv \pm 1 \mod p$.

Proof of Euler's criterion: Suppose a is a QR $\Rightarrow a = b^2 \mod p$ $a^{\frac{p-1}{2}} = (b^2)^{\frac{p-1}{2}} \equiv b^{p-1} = 1 \mod p$ \Leftarrow Let g be a primitive root $a \equiv g^k \mod p$ for some k $a^{\frac{p-1}{2}} = g^{\frac{k}{2}(p-1)}$ so k must be even. Let $c = g^{\frac{k}{2}}$. $c^2 \equiv g^k \equiv a \mod p \Rightarrow a$ is a QR.

Paraphrase: If G is a cyclic group or order 2n (e.g. 2n = p - 1), $x \in G \Leftrightarrow x^N = 1$ in G (proof same).

More generally, if G is a cyclic group of order $MN \Rightarrow a \in G$ is a solution of $x^M = a \Leftrightarrow a^M = 1$

(Taking M = 2 gives previous statement.) Proof: If g is a generator, $a = g^k$ for some k $a^N = 1 \Leftrightarrow g^{Nk} = 1 \Leftrightarrow NM|Nk$ since NM = order of $g \Leftrightarrow M|k$. If this is true, $a = g^k = b^n$, where $b = g^{\frac{k}{M}}$ "Euler's criterion is just a reflection of the fact that the group is cyclic."

Legendre Symbol: I (a, p) = 1, $(\frac{a}{p}) = 1$ if a is a QR modp $(\frac{a}{p}) = -1$ if a is a QNR modp

Clear: If $a \equiv b \mod p \Rightarrow \left(\frac{a}{b}\right) = \left(\frac{b}{p}\right)$ Less clear: Given a $\exists M = M(a)$ s.t. if $p \equiv q \mod M \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{a}{q}\right)$ $a = -1 \Rightarrow M = 4$, A = 2, M = 8<u>Fact</u>: $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{a}{p}\right)$ Proof: $\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ Both sides are ± 1 , so they are equal.

Def (pg. 404 in book): Let M be some modulus. A <u>Dirichlet character</u> modM is a function χ on the res. classes mod M prime to M such that $\chi(ab) = \chi(a)\chi(b)$. Note: We extend χ to all res. classes by $\chi(a) = 0$ if $GCD(a, M) \neq 1$ and $\chi(ab) = \chi(a)\chi(b)$ remains true.

So $\chi(a) = \left(\frac{a}{p}\right)$ gives a Dirichlet character mod p. Much deeper: Given a, there is a Dirichlet character $\chi' \mod M(a)$ s.t. if p is an odd prime $\left(\frac{a}{p}\right) = \chi'(p)$

<u>Gauss' Lemma</u>: Consider the least residues of $a, 2a, ..., \frac{p-1}{2}a \mod p$ ($k \equiv r \mod p, 0 \leq r \leq p$; r is called the <u>least</u> residue of k mod p (remainder on dividing k by p)). Let n = the number of these least residues that are > p/2. Then $(\frac{a}{p}) = (-1)^n$.

Let $a = 2, p = 11, \frac{p-1}{2} = 5$ 2, 4, 6, 8, 10 have least res. 2, 4, 6, 8, 10. Of these 6, 8, 10 > $\frac{11}{2}$, so $(\frac{2}{11}) = (-1)^3 = -1 \mod 11$ (Using Gauss' Lemma you can prove $(\frac{2}{p})$ if $\substack{p \equiv \pm 1 \mod 8\\ p \equiv \pm 3 \mod 8}$).

a=3,p=11

3, 6, 9, 12, 15 are 3, 6, 9, 1, 4. Two (6,9) are $> \frac{11}{2}$; $(\frac{3}{11})$. (And indeed, $5^2 \equiv 3 \mod 11$ QR).

Proof of Gauss' Lemma:

Let $r_1, r_2, ..., r_n$ be the least residues of the numbers among $a, 2a, 3a, \frac{p-1}{2}a$ that satisfy $r_i > \frac{p}{2}$. Let $s_1, s_2, ..., s_m$ be the least res. $< \frac{p}{2}$. We have $a(2a)(3a)...(\frac{p-1}{2}a) = a^{\frac{p-1}{2}}(\frac{p-1}{2})! \equiv (\frac{p-1}{2})!(\frac{a}{p})$ $\equiv r_1...r_n \cdot r_1...r_m$ (are $1, 2, ..., \frac{p-1}{2}$ rearranged?) Claim: $s_1, ..., s_m, p - r_1, ..., p - r_m$ are all in $1 \le x \le \frac{p-1}{2}$ If n = # of least res. of $a, 2a, ..., \frac{p-1}{2}a$ that are $> \frac{p}{2} \Rightarrow (\frac{a}{p}) = (-1)^n$. Enough to show no repetitions among s_i . If $s_i \equiv s_j \Rightarrow s_i = ta$ $(t \in \{1, 2, ..., \frac{p-1}{2}\})$, $s_j \equiv ua$. $\Rightarrow t \equiv u$ impossible unless t = u. Similarly no rep. among r_j , hence none among $p - r_j$. Have to exclude $s_i = p - r_j$. $s_i \equiv ta, r_j \equiv ua$ if $s_i = p - r_j \Rightarrow ta = p - ua \Rightarrow t + u \equiv 0 \mod p$. Also impossible with $t, u \in \{1, 2, ..., \frac{p-1}{2}\} \Rightarrow$ claim proved. $(\frac{p-1}{2})! = s_1...s_m \cdot (p - r_1)...(p - r_n) \equiv s_1...s_m \cdot r_1...r_m(-1)^n \equiv (\frac{p-1}{2})!(\frac{a}{p})(-1)^n$ (from before). Cancel $(\frac{a}{p})(-1)^n \equiv 1 \Rightarrow (\frac{a}{p}) = (-1)^n$