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When are two polynomials equivalent (or congruent)?
xp − x ≡ 0 mod p∀x ∈ Z
xp − x ≡ 0∀x ∈ Zp

xp − x in ring Zp[x] is NOT zero.
xp − x ≡ 0 mod p is not a congruence of polys.
xp − x = 0 for all x ∈ Zp

Zp ⊂ larger fields with pr elements for any r
Zp[x] polynomial ring is a unique factorization domain. So you can define ideals, factor into irre-
ducibles, etc. You would lose this algebra if you declare xp − x = 0.

p an odd prime.
If GCD(a, p) = 1 we call a a quadratic residue if x2 ≡ a mod p has a solution x = b. Then x = −b
is also a solution, so the equation has exactly two solutions.
If c2 ≡ a mod p, c2 ≡ b2 ⇒ (c− b)(c+ b) = c2 − b2 ≡ 0⇒ c = ±b (c, b are the only roots).
Ax2 +Bx+ C ≡ 0 will have roots
⇒ D = B2 − 4AC ≡ 0 mod p or D is a QR.
Work in Zp; Ax2 +Bx+C ≡ 0 (B2−AC

4A
)+A(x− B

2A
)2 = Ax2 +Bx− B2

4A
− (B2−AC

4A
) = Ax2 +Bx+C.

This is zero ⇒ (x− B
2A

)2 = D
4A2 .

So D must be a square modp, i.e. a QR.

Euler’s criterion: Let GCD(a, p) = 1.

Then a is a QR ⇒ a
p−1
2 = 1 mod p.

Observe: In any case a
p−1
2 ≡ ±1 because if a

p−1
2 = λ, λ2 = ap−1 ≡ 1 mod p⇒ x ≡ ±1 mod p.

Proof of Euler’s criterion:
Suppose a is a QR ⇒ a = b2 mod p
a

p−1
2 = (b2)

p−1
2 ≡ bp−1 = 1 mod p

⇐ Let g be a primitive root a ≡ gk mod p for some k
a

p−1
2 = g

k
2
(p−1) so k must be even.

Let c = g
k
2 . c2 ≡ gk ≡ a mod p⇒ a is a QR.

Paraphrase: If G is a cyclic group or order 2n (e.g. 2n = p − 1), x ∈ G ⇔ xN = 1 in G
(proof same).
More generally, if G is a cyclic group of order MN ⇒ a ∈ G is a solution of xM = a ⇔ aM = 1

1



(Taking M = 2 gives previous statement.)
Proof: If g is a generator, a = gk for some k
aN = 1⇔ gNk = 1⇔ NM |Nk since NM = order of g ⇔M |k.

If this is true, a = gk = bn, where b = g
k
M

”Euler’s criterion is just a reflection of the fact that the group is cyclic.”

Euler: a is a QR ⇔ a
p−1
2 ≡ 1 mod p.

Special case: −1 is a QR ⇔ p ≡ 1 mod 4.

Because (−1)
p−1
2 ≡ 1 mod p⇔ (−1)

p−1
2 = 1 (Since p 6= 2 both (−1)

p−1
2 , 1 are ±1).

Surprising: This depends only on p mod 4.
Even more surprising: hether z is a QR depends only on p mod 8. We’ll prove later 2 is a QR
⇔ p ≡ ±1 mod 8
If p ≡ q mod 8 (odd primes), 2 is a QR modp⇔ 2 is a QR modq

Legendre Symbol: I (a, p) = 1,
(a

p
) = 1 if a is a QR modp

(a
p
) = −1 if a is a QNR modp

Clear: If a ≡ b mod p⇒ (a
b
) = ( b

p
)

Less clear: Given a ∃M = M(a) s.t. if p ≡ q mod M ⇒ (a
p
) = (a

q
)

a = −1⇒M = 4,
A = 2,M = 8
Fact: (ab

p
) = (a

p
)(a

p
)

Proof: (ab
p

) ≡ (ab)
p−1
2 = a

p−1
2 b

p−1
2 ≡ (a

p
)( b

p
)

Both sides are ±1, so they are equal.

Def (pg. 404 in book): Let M be some modulus. A Dirichlet character modM is a function
χ on the res. classes modM prime to M such that χ(ab) = χ(a)χ(b).
Note: We extend χ to all res. classes by χ(a) = 0 if GCD(a,M) 6= 1 and χ(ab) = χ(a)χ(b) remains
true.

So χ(a) = (a
p
) gives a Dirichlet character modp.

Much deeper: Given a, there is a Dirichlet character χ′ mod M(a) s.t. if p is an odd prime
(a

p
) = χ′(p)

Gauss’ Lemma: Consider the least residues of a, 2a, ..., p−1
2
a mod p (k ≡ r mod p, 0 ≤ r ≤ p;

r is called the least residue of k mod p (remainder on dividing k by p)).
Let n = the number of these least residues that are > p/2. Then (a

p
) = (−1)n.

Let a = 2, p = 11, p−1
2

= 5
2, 4, 6, 8, 10 have least res.
2, 4, 6, 8, 10.
Of these 6, 8, 10 > 11

2
, so ( 2

11
) = (−1)3 = −1 mod 11

(Using Gauss’ Lemma you can prove (2
p
) if p≡±1 mod 8

p≡±3 mod 8
).

a = 3, p = 11
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3, 6, 9, 12, 15 are
3, 6, 9, 1, 4.
Two (6,9) are > 11

2
; ( 3

11
).

(And indeed, 52 ≡ 3 mod 11 QR).

Proof of Gauss’ Lemma:
Let r1, r2, ..., rn be the least residues of the numbers among a, 2a, 3a, p−1

2
a that satisfy ri >

p
2
. Let

s1, s2, ..., sm be the least res. < p
2
.

We have a(2a)(3a)...(p−1
2
a) = a

p−1
2 (p−1

2
)! ≡ (p−1

2
)!(a

p
)

≡ r1...rn · r1...rm (are 1, 2, ..., p−1
2

rearranged?)

Claim: s1, ..., sm, p− r1, .., p− rm are all in 1 ≤ x ≤ p−1
2

If n = # of least res. of a, 2a, ...p−1
2
a that are > p

2
⇒ (a

p
) = (−1)n.

Enough to show no repetitions among si.
If si ≡ sj ⇒ si = ta (t ∈ {1, 2, ..., p−1

2
}), sj ≡ ua.

⇒ t ≡ u impossible unless t = u. Similarly no rep. among rj, hence none among p− rj. Have to
exclude si = p− rj.
si ≡ ta, rj ≡ ua if si = p − rj ⇒ ta = p − ua ⇒ t + u ≡ 0 mod p. Also impossible with
t, u ∈ {1, 2, ..., p−1

2
} ⇒ claim proved.

(p−1
2

)! = s1...sm · (p− r1)...(p− rn) ≡ s1...sm · r1...rm(−1)n ≡ (p−1
2

)!(a
p
)(−1)n (from before).

Cancel (a
p
)(−1)n ≡ 1⇒ (a

p
) = (−1)n
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