Math 152 Notes

Lucas Garron

October 15, 2009

20091015

Midterm 1, Problem 5: Show that if GCD(m, n) = 1, and (1) $(x^2 \equiv 1 \mod m \text{ has a solution})$ and $(y^2 \equiv 1 \mod n \text{ has a solution}) \Rightarrow (z^2 \equiv 1 \mod m n \text{ has a solution})$. $a \text{ is a solution to } x^2 \equiv -1 \mod m$ $b \text{ is a solution to } x^2 \equiv -1 \mod n$ $CRT \Rightarrow \exists r \text{ with } r \equiv a \mod m \text{ and } r \equiv b \mod n$ $r^2 \equiv a^2 \equiv -1 \mod m \text{ and } r^2 \equiv b^2 \equiv -1 \mod n$ $\Rightarrow r^2 \equiv -1 \mod mn$

A group G of order n is cyclic (with generator x) if $G = 1, x, x^2, ..., x^{(n-1)}$ If this is true, $x^n = 1$, and in fact $x^k = 1 \Leftrightarrow n | k$. Theorem: p prime $\Rightarrow \mathbb{Z}_p$ cyclic of order p - 1. If m is composite, $\mathbb{Z}_m^x =$ group of res. classes prime to m has order $\phi(m)$ may or may not be cyclic. If \mathbb{Z}_m^x is cyclic, a generator is called a primitive root.

Saw Thursday, <u>Theorem</u>: if F is a field (e.g. $F = \mathbb{Z}_p$), any monic (leading coefficient 1) polynomial $x^k + a_{k-1}x^{k-1} + \ldots + a_0$, $a_i \in F$, has at most k roots, i.e. $\{r \in F | f(r) = 0\}$ has $\leq k = deg(f)$. We know $x^{p-1} = 0$ has exactly p-1 roots in $F = \mathbb{Z}_p$ (namely, the non-zero res. classes.) <u>Lemma</u>: If d|p-1, then $x^d - 1 = 0$ has exactly d roots. Proof: It has $\leq d$ roots, by theorem. $\frac{x^{p-1}-1}{x^d-1} = x^{p-d-1} + x^{p-2d-1} + \ldots + x^d (d|p-1)$ $x^{p-1} = (x^d - 1)(x^{p-d-1} + x^{p-2d-1} + \ldots + x^d) = (x^d - 1)g(x)$ Since $x^{p-1} = 0$ has p-1 roots, if $x^d - 1$ had < d roots then g(x) would have > p-d-1 roots, namely the roots of $x^{p-1}-1$ that are not roots of $x^d-1 = 0$. This is a contradiction, since p-d-1 = deg(g).

If d|p-1 define $\psi(d) =$ the number of $a \in F^{\times} = \mathbb{Z}_p^x$ with order d ("belonging to d"). a^d and $a^k = 1 \Leftrightarrow d|k$ order of a is cardinality of $\{1, a, a^2, ..., a^k\}$. $\psi(1) = 1, \psi(2) = 2, \psi(2) = 1, \psi(6) = 2$ (We'll prove $\psi(d) = \phi(d)$). <u>Lemma</u> If $m|p-1 \Rightarrow m = \sum_{d|m} \psi(d)$

Because: $a \in F$ is a root of $x^m - 1 \Leftrightarrow$ order of a divides m. There are $\psi(d)$ of these for each possible order d of a inF^{\times} .

Counting, m = # of roots of $x^m - 1 = \sum_{d|m} \#$ of elts of order $d = \sum_{d|m} \psi(d)$.

If m|p-1, $\sum_{d|m} \psi(d) = m = \sum_{d|m} \phi(d)$. Claim: If $m|p-1 \Rightarrow \psi(m) = \phi(m)$.

If not, let m be a minimal counterexample, so $\psi(d) = \phi(d)$. If d|p-1 and d < m.

$$\psi(m) = m - \sum_{d|m,d < m} \psi(d) \stackrel{=}{\underset{induction}{=}} = m - \sum_{d|m,d < m} \phi(d) = \phi(m).$$
 Completes the proof of proposition.

You can prove (using Hensel's Lemma) if p is an odd prime, there are primitive roots $\text{mod}p^k$ for all k

if p = 2, false. $\mathbb{Z}_{2^k}^{\times}$ (a group of order $2^{k-1} = C_2$ (cyclic group of order 2) $\times C_{2^{k-2}}$ (cyclic group of order 2^{k-1}))

"Chinese Remainder Theorem": The arithmetics in \mathbb{Z}_m and \mathbb{Z}_n (GCD(m, n) = 1) are independent. For example: If $f(x) = x^k + a_{k-1}x^{k-1} + ... + a_0$ ($a_i \in \mathbb{Z}$) is a monic polynomial, it may or may not have solutions in \mathbb{Z}_m , same \mathbb{Z}_n .

It a solution in $\mathbb{Z}_{mn} \Leftrightarrow$ has a solution in \mathbb{Z}_n and one in \mathbb{Z}_m .

We'll prove:

Suppose p, q are distinct, odd primes, $p \not| a, q \not| a$, and $x^2 \equiv a \mod p$ has a solution:

 $x^2 \equiv a \mod p$ has a solution \Leftrightarrow has exactly two solutions.

Say a is a "quadratic residue" mod p if this is true.

Proposition: Exactly $\frac{1}{2}(p-1)$ of the p-1 res. classes prime to p are quadratic residues.

 $(p = 7: 1, 2, 4 \text{ are quadratic residues}; 3, 5, 6 \text{ quadratic nonresidues} (not quadratic residues}))$

<u>Quadratic Reciprocity</u>: p is a QR mod $q \Leftrightarrow q$ is a QR modp UNLESS $p \equiv q \equiv 3 \mod 4$, in which case p is a QR mod $q \Leftrightarrow q$ is a QNR modp

First proof: (not using \mathbb{Z}_p^{\times} is cyclic). p odd prime, $p \not| a$. Lemma: If $x^2 \equiv a \mod p$ has a solution, it has exactly 2 solutions. Let u be one solution, -u is another $((-u)^2 \equiv u^2 \equiv a \mod p)$. Claim: If $v^2 \equiv a \Rightarrow v \pm u$ because $p|v^2 - a = v^2 - u^2 = (v - u)(v + u) \Rightarrow p|(v - u)$ or $p|(v + u) \Rightarrow$ $v = \pm u \mod p \ (x^2 - a \ \text{cannot have} > 2 \ \text{roots})$ p-1 pigeons, p-1 boxes, 2 pigeons in each box. $\Rightarrow \frac{1}{2}(p-1)$ boxes with pigeons. More formally, map $\gamma : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}, \, \gamma(x) = x^2$. This map is 2-1 (lemma), so the image has $\frac{1}{2}(p-1)$ elements. Second Proof: Consider a cyclic group with m elements with (e.g. m = p - 1) d|m (e.g. d = 2). Define $\gamma: G \to G, \gamma(x) = x^d$. Claim: image of γ has order $\frac{m}{d}$. Because: G has a generator $g, G = \{1, g, g^2, ..., g^{m-1}\}.$ Consider the subgroup of G generated by g^d . Call it H. $H = \{1, g^d, g^{2d}, ..., g^{d(\frac{m}{d}-1)}\}$; H has order $\frac{m}{d}$. But H is just the image of γ . γ (typical element) = $\gamma(g^k) = g^{dk}$, so image of γ has exactly $\frac{m}{d}$ elements all lying in a subgroup (subset of G closed under multiplication). Applying this in the case $G = \mathbb{Z}_{p}^{\times}$, m = p - 1, $d = 2 \underset{second proof}{\Rightarrow} H = \text{image of } \gamma = \text{quad. res.}$