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Midterm 1, Problem 5:
Show that if GCD(m,n) = 1, and
(1) (x2 ≡ 1 mod m has a solution) and (y2 ≡ 1 mod n has a solution) ⇒ (z2 ≡ 1 mod mn has a
solution).
a is a solution to x2 ≡ −1 mod m
b is a solution to x2 ≡ −1 mod n
CRT ⇒ ∃r with r ≡ a mod m and r ≡ b mod n
r2 ≡ a2 ≡ −1 mod m and r2 ≡ b2 ≡ −1 mod n
⇒ r2 ≡ −1 mod mn

A group G of order n is cyclic (with generator x) if G = 1, x, x2, ..., x(n− 1)

If this is true, xn = 1, and in fact xk = 1⇔ n|k.
Theorem: p prime ⇒ Zp cyclic of order p− 1.
If m is composite, Zx

m = group of res. classes prime to m has order φ(m) may or may not be cyclic.
If Zx

m is cyclic, a generator is called a primitive root.

Saw Thursday, Theorem: if F is a field (e.g. F = Zp), any monic (leading coefficient 1) polynomial
xk + ak−1x

k−1 + ...+ a0, ai ∈ F , has at most k roots, i.e. {r ∈ F |f(r) = 0} has ≤ k = deg(f).
We know xp−1 = 0 has exactly p− 1 roots in F = Zp (namely, the non-zero res. classes.)
Lemma: If d|p− 1, then xd − 1 = 0 has exactly d roots.
Proof: It has ≤ d roots, by theorem.
xp−1−1
xd−1

= xp−d−1 + xp−2d−1 + ...+ xd (d|p− 1)

xp−1 = (xd − 1)(xp−d−1 + xp−2d−1 + ...+ xd) = (xd − 1)g(x)
Since xp−1 = 0 has p−1 roots, if xd−1 had < d roots then g(x) would have > p−d−1 roots, namely
the roots of xp−1−1 that are not roots of xd−1 = 0. This is a contradiction, since p−d−1 = deg(g).

If d|p − 1 define ψ(d) = the number of a ∈ F× = Zx
p with order d (“belonging to d”). ad

and ak = 1⇔ d|k order of a is cardinality of {1, a, a2, ..., ak}.
ψ(1) = 1, ψ(2) = 2, ψ(2) = 1, ψ(6) = 2 (We’ll prove ψ(d) = φ(d)).

Lemma If m|p− 1⇒ m =
∑
d|m

ψ(d)

Because: a ∈ F is a root of xm − 1 ⇔ order of a divides m. There are ψ(d) of these for each
possible order d of a inF×.
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Counting, m = # of roots of xm − 1 =
∑
d|m

# of elts of order d =
∑
d|m

ψ(d).

If m|p− 1,
∑
d|m

ψ(d) = m =
∑
d|m

φ(d).

Claim: If m|p− 1⇒ ψ(m) = φ(m).
If not, let m be a minimal counterexample, so ψ(d) = φ(d). If d|p− 1 and d < m.

ψ(m) = m−
∑

d|m,d<m

ψ(d) =
induction

= m−
∑

d|m,d<m

φ(d) = φ(m). Completes the proof of proposition.

You can prove (using Hensel’s Lemma) if p is an odd prime, there are primitive roots modpk

for all k
if p = 2, false. Z×

2k (a group of order 2k−1 = C2 (cyclic group of order 2) ×C2k−2 (cyclic group of
order 2k−1))

”Chinese Remainder Theorem”: The arithmetics in Zm and Zn (GCD(m,n) = 1) are independent.
For example: If f(x) = xk + ak−1x

k−1 + ...+ a0 (ai ∈ Z) is a monic polynomial, it may or may not
have solutions in Zm, same Zn.
It a solution in Zmn ⇔ has a solution in Zn and one in Zm.

We’ll prove:
Suppose p, q are distinct, odd primes, p 6 |a, q 6 |a, and x2 ≡ a mod p has a solution:
x2 ≡ a mod p has a solution ⇔ has exactly two solutions.
Say a is a “quadratic residue” modp if this is true.
Proposition: Exactly 1

2
(p− 1) of the p− 1 res. classes prime to p are quadratic residues.

(p = 7: 1, 2, 4 are quadratic residues; 3, 5, 6 quadratic nonresidues (not quadratic residues))

Quadratic Reciprocity: p is a QR modq ⇔ q is a QR modp UNLESS p ≡ q ≡ 3 mod 4, in which
case p is a QR modq ⇔ q is a QNR modp

First proof: (not using Z×p is cyclic). p odd prime, p 6 |a.
Lemma: If x2 ≡ a mod p has a solution, it has exactly 2 solutions.
Let u be one solution, −u is another ((−u)2 ≡ u2 ≡ a mod p).
Claim: If v2 ≡ a⇒ v ± u because p|v2 − a = v2 − u2 = (v − u)(v + u) ⇒ p|(v − u) or p|(v + u) ⇒
v = ±u mod p (x2 − a cannot have > 2 roots)
p− 1 pigeons, p-1 boxes, 2 pigeons in each box. ⇒ 1

2
(p− 1) boxes with pigeons.

More formally, map γ : Z×p → Z×p , γ(x) = x2.
This map is 2-1 (lemma), so the image has 1

2
(p− 1) elements.

Second Proof: Consider a cyclic group with m elements with (e.g. m = p− 1) d|m (e.g. d = 2).
Define γ : G→ G, γ(x) = xd.
Claim: image of γ has order m

d
.

Because: G has a generator g, G = {1, g, g2, ..., gm−1}.
Consider the subgroup of G generated by gd. Call it H. H = {1, gd, g2d, ..., gd(m

d
−1)}; H has order

m
d

.
But H is just the image of γ.
γ(typical element) = γ(gk) = gdk, so image of γ has exactly m

d
elements all lying in a subgroup

(subset of G closed under multiplication).
Applying this in the case G = Z×p , m = p− 1, d = 2 ⇒

secondproof
H = image of γ = quad. res.
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