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Sections relevant to midterm are ≤ 2.3, 2.10, 2.11

Corection: q
∞∏
n=1

(1− qn)24 =
∑
τ(n)qn = q − 24q2 + 25q3...

What proved and of immediate importance (midterm!):
φ is the number of residue classes mod m prime to m. (Makes sense because GCD(a,m) depends
only on the res. class of a mod m).
φ multiplicative: GCD(m,n) = 1⇒ φ(mn) = φ(m)φ(n)
φ(pk) = pk − pk−1 (and φ(p) = p− 1)

φ(24) = φ(3 · 8) = φ(3) · φ(8) = 2 · 4 = 8
|{1, 5, 7, 11, 13, 17, 19, 23}| = 8

Also from last time:
∑
d|n

φ(d) = n

Euler’s Generalization of Fermat’s Little Theorem:
GCD(a,m) = 1⇒ aφ(m) ≡ 1 mod m
(m = prime: Fermat, ap−1 = 1 mod p)
Prove this using ideas from group theory.

Let b1, b2, ..., bk where k = φ(m) be representatives of the res. classes modm prime to m.
(e.g. m = 24, k = 8: {1, 5, 7, 11, 13, 17, 19, 23}).
Check: ab1, ab2, ..., abk are the same res. classes rearranged. abi ≡ bj for some unique j. Almost
obvious:
GCD(abi) = 1 since GCD(a,m) = GCD(bi,m) = 1;
So abi ≡ bj∃j. If bi 6≡ bi′ , then abi 6≡ abi′ mod m since if not m|abi − abi′ = a(bi − bi′) but
GCD(a,m) = 1, so m|bi = bi′ , contradiction. This proves that bi 7→ abi is a permutation of these
res. classes.

Multiply: ak
k∏
i=1

(bi) ≡
k∏
i=1

(abi) ≡
k∏
i=1

(bi) mod m.
∏
bi is prime to m so cancel and ak ≡ 1 mod m.

QED.
Suppose m = p odd prime. Then

∏
bi = (p− 1)!
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Wilson’s Theorem: (p− 1)! ≡ −1 mod p
Proof: Consider in Zp = ring of residue classes modp prime to p each k which is a non-zero res.
class (with rep. a ≤ k ≤ p− 1) has an inverse in zp, i.e. k′ with kk′ ≡ 1 mod p.
If k 6≡ ±1 mod p, claim k, k′ are distinct.
k = 7 : k = k′ only for k = 1 or 6.
k2 ≡ 1 mod p (k − 1)(k + 1) ≡ 0 mod p. So p|k − 1 or k + 1.
k ≡ ±1 mod p⇒ claim proved.

(p− 1)! = 1 · 2 · ... · (p− 1) = 1 · (p− 1) ·
∏

pairs(k,k′)kk′≡1,k 6≡k′
kk′ ≡ 1(−1) · 1 · 1 ≡ −1 mod p.

A group G is a set with a composition law. This may be written additively or multiplicatively.
Start multiplicative.
m : G×G→ G is then denoted by the usual signs for multiplication. m(x, y) = x×y = x ·y = xy.
(If additive: m(x, y) = x+ y).
Axioms (multiplicative version):
a(bc) = (ab)c
∃1 ∈ G with 1 · a = a · 1 = a
∀a∃o−1 with aa−1 = a−1a = 1
Not assumed ab = ba. If true ∀a, b, the group is commutative, or Abelian. (Caution: Additive
notation is not used for nonabelian G.)
If R is a ring, there are two groups:
(R,+) (R is an Abelian group with respect to +).
Def.: R× = set of units in R = {x ∈ R|xy = yx = 1 for some y} (y denoted x−1) is a group with
respect to x.
If R = Zm ⇒ (R,+) has order m, (R×, x) has order φ(m)
m = G, R× = {1̄, 6̄} = {1̄,−1}.
To clarify, if GCD(a,m) = 1, and ā = res. class of a mod m, then ā is a unit. ka + lm = 1 some
k, l⇒ k̄ = ā−1.
Theorem: If G is a finite group of order N (i.e. G has N elements) and a ∈ G⇒ aN = 1 in G.
Proof require notion of cosets ∈ Math 120. Special case G Abelian has easy proof:
The map f : G→ G
f(x) = ax is a bijection since it has an inverse g(x) = a−1x f g(x) = x = g f(x), so since G is

Abelian
∏
x∈G

x is well-defined () Abelian).

Since f is a bijection G→ G,
∏
x∈G

f(x) =
∏
x∈G

(ax) =(GAbelian) a
N

∏
x∈G

x cancel
∏

x from both sides

aN = 1.

Section 2.7 (hopefully)

Congruences of the form f(x) = anx
n + an−1x

n−1 + ...+ a0 ≡ 0 mod p
(an 6= 0 mod p can’t hurt to assume).
More generally, f(x) ≡ 0 mod m where m is any modulus.

Theorem: If p is prime, f(x) ≡ 0 mod p has at most n roots modp.
False for n = 8 composite: x2 − 1 = 0 mod 8 has sols 1, 3, 5, 7
Ex. x3 + x2 + x+ 1 mod 2 ≡ (x+ 1)(x2 + 1) = (x+ 1)(x+ 1)2 = (x+ 1)3 has root 1 ≡ −1 mod 2
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with multiplicity 3.
Reformulate this in the field F = Zp.
(Field is a commutative ring with R× = R− {0} all nonzero elements are units).

Theorem: In a field, any polynomial of degree n has at most n roots.
f(x) = an(xn + an−1

an
+ ...+ a0

an
) = anf1(x)

Roots of f, f1 are the same, so WLOG an = 1.
If q is a root, may divide f by x− q.

Theorem: In any field (e.g. C,Zp, R,Q, ...), any poly. of degree n has ≤ n roots.
If f, g polynomials, deg(g) = d, can write f(x) = g · q(x) + r(x), q, r are polynomials, deg(r) <
deg(d). If α is a root, divide: f = (x− α)q + r.
r is a polynomial of degree < 1 < deg(x− α)⇒ r is a constant.
Evaluate by substituting x = α. 0 = f(α) = (α−α)q+ r. So r is the constant 0, i.e. x−α divides
f.
f(X) = (x−α)q(x). Degree of q (which is n-1) ¡ degree of f , so by induction q has ≤ n− 1 roots.
So f has roots α, plus the roots of q, ≤ n altogether.
⇒ Z×p is a cyclic group.
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