Math 152 Notes

Lucas Garron

October 6, 2009

20091006

Sections relevant to midterm are $\leq 2.3, 2.10, 2.11$

Corection:
$$q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n = q - 24q^2 + 25q^3...$$

What proved and of immediate importance (midterm!):

 ϕ is the number of residue classes mod m prime to m. (Makes sense because GCD(a,m) depends only on the res. class of $a \mod m$).

$$\phi$$
 multiplicative: $GCD(m,n) = 1 \Rightarrow \phi(mn) = \phi(m)\phi(n)$
 $\phi(p^k) = p^k - p^{k-1} \text{ (and } \phi(p) = p-1)$

$$\phi(24) = \phi(3 \cdot 8) = \phi(3) \cdot \phi(8) = 2 \cdot 4 = 8$$
$$|\{1, 5, 7, 11, 13, 17, 19, 23\}| = 8$$

Also from last time:
$$\sum_{d|n} \phi(d) = n$$

Euler's Generalization of Fermat's Little Theorem:

 $GCD(a, m) = 1 \Rightarrow a^{\phi(m)} \equiv 1 \bmod m$

 $(m = \text{prime: Fermat}, a^{p-1} = 1 \mod p)$

Prove this using ideas from group theory.

Let $b_1, b_2, ..., b_k$ where $k = \phi(m)$ be representatives of the res. classes mod m prime to m. (e.g. m = 24, k = 8: $\{1, 5, 7, 11, 13, 17, 19, 23\}$).

Check: $ab_1, ab_2, ..., ab_k$ are the same res. classes rearranged. $ab_i \equiv b_j$ for some unique j. Almost obvious:

 $GCD(ab_i) = 1$ since $GCD(a, m) = GCD(b_i, m) = 1$;

So $ab_i \equiv b_j \exists j$. If $b_i \not\equiv b_{i'}$, then $ab_i \not\equiv ab_{i'} \mod m$ since if not $m|ab_i - ab_{i'} = a(b_i - b_{i'})$ but GCD(a, m) = 1, so $m|b_i = b_{i'}$, contradiction. This proves that $b_i \mapsto ab_i$ is a permutation of these res. classes.

Multiply: $a^k \prod_{i=1}^k (b_i) \equiv \prod_{i=1}^k (ab_i) \equiv \prod_{i=1}^k (b_i) \mod m$. $\prod b_i$ is prime to m so cancel and $a^k \equiv 1 \mod m$. QED.

Suppose m = p odd prime. Then $\prod b_i = (p-1)!$

Wilson's Theorem: $(p-1)! \equiv -1 \mod p$

Proof: Consider in $Z_p = \text{ring of residue classes mod} p$ prime to p each k which is a non-zero res. class (with rep. $a \le k \le p-1$) has an inverse in z_p , i.e. k' with $kk' \equiv 1 \mod p$.

If $k \not\equiv \pm 1 \mod p$, claim k, k' are distinct.

k = 7 : k = k' only for k = 1 or 6.

 $k^2 \equiv 1 \mod p \ (k-1)(k+1) \equiv 0 \mod p$. So p|k-1 or k+1.

 $k \equiv \pm 1 \mod p \Rightarrow \text{claim proved.}$

$$(p-1)! = 1 \cdot 2 \cdot \dots \cdot (p-1) = 1 \cdot (p-1) \cdot \prod_{pairs(k,k')kk' \equiv 1, k \not\equiv k'} kk' \equiv 1(-1) \cdot 1 \cdot 1 \equiv -1 \mod p.$$

A group G is a set with a composition law. This may be written additively or multiplicatively. Start multiplicative.

 $m: G \times G \to G$ is then denoted by the usual signs for multiplication. $m(x,y) = x \times y = x \cdot y = xy$. (If additive: m(x,y) = x + y).

Axioms (multiplicative version):

a(bc) = (ab)c

 $\exists 1 \in G \text{ with } 1 \cdot a = a \cdot 1 = a$

 $\forall a \exists o^{-1} \text{ with } aa^{-1} = a^{-1}a = 1$

Not assumed ab = ba. If true $\forall a, b$, the group is commutative, or <u>Abelian</u>. (Caution: Additive notation is not used for nonabelian G.)

If R is a ring, there are two groups:

(R, +) (R is an Abelian group with respect to +).

Def.: R^{\times} = set of units in $R = \{x \in R | xy = yx = 1 \text{ for some } y\}$ (y denoted x^{-1}) is a group with respect to x.

If $R = Z_m \Rightarrow (R, +)$ has order $m, (R^{\times}, x)$ has order $\phi(m)$

 $m = G, R^{\times} = \{\overline{1}, \overline{6}\} = \{\overline{1}, \overline{-1}\}.$

To clarify, if GCD(a, m) = 1, and $\bar{a} = \text{res. class of } a \mod m$, then \bar{a} is a unit. ka + lm = 1 some $k, l \Rightarrow \bar{k} = \bar{a}^{-1}$.

Theorem: If G is a finite group of order N (i.e. G has N elements) and $a \in G \Rightarrow a^N = 1$ in G.

Proof require notion of cosets \in Math 120. Special case G Abelian has easy proof:

The map $f: G \to G$

f(x) = ax is a bijection since it has an inverse $g(x) = a^{-1}x$ f g(x) = x = g f(x), so since G is Abelian $\prod_{x \in G} x$ is well-defined () Abelian).

Since f is a bijection $G \to G$, $\prod_{x \in G} f(x) = \prod_{x \in G} (ax) =_{(GAbelian)} a^N \prod_{x \in G} x$ cancel $\prod x$ from both sides $a^N = 1$.

Section 2.7 (hopefully)

Congruences of the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 \equiv 0 \mod p$ $(a_n \neq 0 \mod p \text{ can't hurt to assume}).$

More generally, $f(x) \equiv 0 \mod m$ where m is any modulus.

Theorem: If p is prime, $f(x) \equiv 0 \mod p$ has at most n roots mod p.

False for n = 8 composite: $x^2 - 1 = 0 \mod 8$ has sols 1, 3, 5, 7

Ex. $x^3 + x^2 + x + 1 \mod 2 \equiv (x+1)(x^2+1) = (x+1)(x+1)^2 = (x+1)^3$ has root $1 \equiv -1 \mod 2$

with multiplicity 3.

Reformulate this in the field $F = Z_p$.

(Field is a commutative ring with $R^{\times} = R - \{0\}$ all nonzero elements are units).

Theorem: In a field, any polynomial of degree n has at most n roots.

 $f(x) = a_n(x^n + \frac{a_{n-1}}{a_n} + \dots + \frac{a_0}{a_n}) = a_n f_1(x)$ Roots of f, f_1 are the same, so WLOG $a_n = 1$.

If q is a root, may divide f by x - q.

Theorem: In any field (e.g. $C, Z_p, R, Q, ...$), any poly. of degree n has $\leq n$ roots.

If f, g polynomials, deg(g) = d, can write $f(x) = g \cdot q(x) + r(x)$, q, r are polynomials, deg(r) < qdeg(d). If α is a root, divide: $f = (x - \alpha)q + r$.

r is a polynomial of degree $< 1 < deg(x - \alpha) \Rightarrow r$ is a constant.

Evaluate by substituting $x = \alpha$. $0 = f(\alpha) = (\alpha - \alpha)q + r$. So r is the constant 0, i.e. $x - \alpha$ divides

 $f(X) = (x - \alpha)q(x)$. Degree of q (which is n-1); degree of f, so by induction q has $\leq n - 1$ roots. So f has roots α , plus the roots of $q, \leq n$ altogether.

 $\Rightarrow Z_p^{\times}$ is a cyclic group.