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Sections relevant to midterm are < 2.3,2.10,2.11

Corection: qH(l — ") =3"7(n)q" = q — 24¢> + 25¢°...
n=1
What proved and of immediate importance (midterm!):
¢ is the number of residue classes mod m prime to m. (Makes sense because GCD(a,m) depends
only on the res. class of @ mod m).
¢ multiplicative: GCD(m,n) =1 = ¢(mn) = ¢(m)p(n)
¢(p*) =p* —p*" (and ¢(p) =p — 1)

6(24) = 6(3-8) = B(3) - 6(8) = 24 =8
{1,5,7,11,13,17,19,23}| = 8

Also from last time: Z o(d) =n
dln

Euler’s Generalization of Fermat’s Little Theorem:
GCD(a,m) =1= a®™ =1 mod m

(m = prime: Fermat, a?~! = 1 mod p)

Prove this using ideas from group theory.

Let by, by, ..., by where k = ¢(m) be representatives of the res. classes modm prime to m.

(e.g. m=24,k=28: {1,5,7,11,13,17,19,23}).

Check: aby, abs, ..., aby are the same res. classes rearranged. ab; = b; for some unique j. Almost
obvious:

GCD(ab;) = 1 since GCD(a,m) = GCD(b;,m) = 1;

So ab; = b;3j. If b; # by, then ab; # aby mod m since if not mlab; — aby = a(b; — by) but
GCD(a,m) =1, so m|b; = by, contradiction. This proves that b; — ab; is a permutation of these

res. classes.
k k

k
Multiply: akH(bi) = H(abi) = H(bl) mod m. []b; is prime to m so cancel and a* = 1 mod m.

=1 =1 =1

QED.
Suppose m = p odd prime. Then [[b; = (p — 1)!



Wilson’s Theorem: (p —1)! = —1 mod p

Proof: Consider in Z, = ring of residue classes modp prime to p each k which is a non-zero res.

class (with rep. a < k <p —1) has an inverse in z,, i.e. k¥’ with k&’ =1 mod p.

If £ £ 4+1 mod p, claim k, k' are distinct.

k=7:k=FK only for k=1 or 6.

k*=1modp (k—1)(k+1) =0mod p. So p|lk —1or k+ 1.

k = 4+1 mod p = claim proved.

(p—1N=1-2-..-(p—1)=1-(p—1)- 11 kk'=1(=1)-1-1= —1mod p.
pairs(k,k')kk'=1,kZk’

A group G is a set with a composition law. This may be written additively or multiplicatively.
Start multiplicative.
m : G x G — G is then denoted by the usual signs for multiplication. m(x,y) =z xy =z-y = xy.
(If additive: m(z,y) =z +vy).
Axioms (multiplicative version):
a(bc) = (ab)c
JleGwithl-a=a-1=a
Vado~! withaa™! =a ta=1
Not assumed ab = ba. If true Va,b, the group is commutative, or Abelian. (Caution: Additive
notation is not used for nonabelian G.)
If R is a ring, there are two groups:
(R,+) (R is an Abelian group with respect to +).
Def.: R* = set of units in R = {x € R|zy = yx = 1 for some y} (y denoted z7') is a group with
respect to x.
If R= 27, = (R,+) has order m, (R*,x) has order ¢(m)
m=G, R ={1,6} = {1,—-1}.
To clarify, if GCD(a,m) = 1, and @ = res. class of @ mod m, then a is a unit. ka + Im = 1 some
kil=k=a"
Theorem: If G is a finite group of order N (i.e. G has N elements) and a € G = a” =1 in G.
Proof require notion of cosets € Math 120. Special case G Abelian has easy proof:
The map f: G — G
f(z) = ax is a bijection since it has an inverse g(x) = a7 'z f g(x) = x = g {(x), so since G is
Abelian H x is well-defined () Abelian).
zeG
Since f is a bijection G — G, H f(z) = H(ax) = (G Abelian) aNH x cancel H x from both sides

zeG z€G zeG
N _ 1

Section 2.7 (hopefully)

Congruences of the form f(z) = a,2" + a, 12" ' + ... + ag = 0 mod p
(an, # 0 mod p can’t hurt to assume).
More generally, f(x) = 0 mod m where m is any modulus.

Theorem: If p is prime, f(z) = 0 mod p has at most n roots modp.
False for n = 8 composite: 22 — 1 = 0 mod 8 has sols 1,3,5,7
Ex. 234+ 2*+2z+1mod2=(x+1)(2>+1)=(x+1)(x+1)* = (x + 1)3 has root 1 = —1 mod 2



with multiplicity 3.
Reformulate this in the field F' = Z,,.
(Field is a commutative ring with R* = R — {0} all nonzero elements are units).

Theorem: In a field, any polynomial of degree n has at most n roots.
f(@) = ap(a™ + == + .+ 22) = an f1(2)

Roots of f, fi are the same, so WLOG a,, = 1.

If ¢ is a root, may divide f by = — q.

Theorem: In any field (e.g. C,Z,, R, (), ...), any poly. of degree n has < n roots.

If f, g polynomials, deg(g) = d, can write f(z) = g - q(z) 4+ r(x), q,r are polynomials, deg(r) <
deg(d). If « is a root, divide: f = (x —a)q+ 7.

r is a polynomial of degree < 1 < deg(x — o) = r is a constant.

Evaluate by substituting z = a. 0 = f(«) = (&« —a)g+7. So r is the constant 0, i.e. x —« divides
f.

f(X) = (x —a)q(z). Degree of g (which is n-1) | degree of f, so by induction ¢ has < n — 1 roots.
So f has roots «, plus the roots of ¢, < n altogether.

= Z, is a cyclic group.



