Math 152 Notes

Lucas Garron

September 30, 2009

20090929

Statement 1: If $(a, p) = 1 \Rightarrow a^{p-1} \equiv 1 \mod p$. Statement 2: $a^p \equiv a \mod p$. Note $S1 \Rightarrow S2$ $(a+b, \frac{a^p+b^p}{a+b}) = 1, p$

BINOMIAL THEOREM: $\binom{a}{b} = \frac{a!}{b!(a-b)!}, 0 \le b \le a$ $\binom{a}{b} = 0$ if b = 0 or b > a $\binom{a}{b} = \frac{a!}{b!(a-b)!} \in Z$ Observe if p is prime $1 \le a \le p-1$ Then $\binom{a}{b}$ is a multiple of p because $\binom{p}{a} = \frac{p!}{a!(p-a)!}$. p divides numerator, but not denom. If $2 \le a \le p-1 \Rightarrow p$ divides $\binom{p+1}{a}$

THM: $(a + b)^p = a^p + b^p \mod p$. (Fermat's Theorem: both sides $\equiv a + b \mod p$) Because: The Binomial Theorem $(a + b)^p = a^p + {p \choose 1}a^{p-1}b + \dots + b^p$ and each term but first and last has factor p.

Important fact: $(x+y)^p \equiv x^p + y^p \mod p$ if p prime.

Thm (Fermat): $x^p \equiv x \mod p$. Proof by induction on $0 \le x \le Z$. x = 0, trivial. If true for x, i.e. $x^p \equiv x$ then $(x + 1)^p \equiv x^p + 1^p \equiv x + 1$ (Induction.)

Integers mod m form a ring. (Denoted Z_m in book. Z/mZ more universal.) Notation: $a \equiv b \mod m$ means a-b is a mult of m. Key fact: If $a \equiv a' \mod m$ and $b \equiv b' \mod m \Rightarrow a + b \equiv a' + b' \mod m$ and $ab a'b' \mod m$. $ab - a'b' = a(b - b') + (a - a')b' \equiv 0$ (implies addition and multiplication mod m are well-defined, see below).

Let us define $\bar{a} = \{x \in R | a \equiv a \mod m\}$ the residue classes mod m. There are m residue classes.

m=3:

 $\bar{0} = \{0, \pm 3, \pm 6, \dots\}$ $\bar{1} = \{1, 4, 7, \dots, -2, -5, \dots\}$ $\bar{2} = \{2, 5, 8, \dots, -1, -4, -7\}$

D efine a ring structure on Z_n = these residue classes. $\bar{a} + \bar{b} = a + \bar{b}, \ \bar{a}\bar{b} = a\bar{b}$

A commutative ring is a field if $0 \neq x \in F \Rightarrow \exists y \text{ with } xy = yx = 1$, i.e. all nonzero elements are units.

Q, C, R are fields, Z is not.

If p is a prime, Z_p is a field. Proof: If $\bar{a} \neq 0$ this means $a \not\equiv 0 \mod p$, (a, p)=1. Implies $\exists m, n1 = ma + np$. $\bar{1} = \bar{m}\bar{a} \Rightarrow \bar{a}^{-1} \bar{m}$ in Z_p

Galois proved: If q is prime power $q = p^k$ some prime $p \Rightarrow \exists$ finite field $GF(q) = F_q$ with q elements.

If q is not prime, $GF(q) \neq Z_q$ (different rings). In GF(q) if $q = p^k$ in that case $x^p \neq x$ p = 2, $(\alpha^2 + \beta)^2 = 1 = \alpha^2 + \beta^2$

Other proof of Fermat's theorem:

 $\phi(m) = \text{Euler's totient function} = \# \text{ of units in } Z_m = \# \text{ of residue classes mod m prime to m.}$ (These defs are equiv. since \bar{a} is a unit $\Leftrightarrow (a, m) = 1$)

Fact: $\phi(p^k) = p^k - p^{k-1}$, p prime, k¿0 If(a, b) = 1 then $\phi(ab) = \phi(a)\phi(b)$: ϕ is "multiplicative." (Proof Thursday.) $\phi(100)$

Thm (Euler): If (a, m) = 1 then $a^{\phi(m)} \equiv 1 \mod m$ Note: If m = p, $\phi(p) = p - 1$, so this reduces to Fermat's Theorem.

 Z_p Fermat Generalizations:

 $\rightarrow Z_m$: Euler (residue fields) $\rightarrow GF(q)$: Galois. (Frobenius map $F(x) = x^p$, F(xy) = F(x)F(y), F(x+y) = F(x) + F(y)) Proof from Last Thursday will adapt.