Math 152 Notes

Lucas Garron

September 26, 2009

20090924

If R = Z, I is called principal if I = all multiples of some $a \in R$.

If $a, b \in R$ (comm.), a|b (a divides b) means b = ac for some $c \in R$. Equivalent: b is a "multiple" of a, $b \equiv (moda)$

 $b \equiv b' moda$ means a|b - b'

 $(a) = al multiples of a = am | m \in R (ideal)$

Greatest Common Divisor: "greater than" refers to ordering with respect to divisibility. A common divisor of a, b would be c s.t. c|a and c|b. Finite such, so there's a largest. i.e. $\exists c \text{ s.t.} c|a, c|b$ and if d|a, d|b, then c > d (Obvious.)

THEOREM: $\exists c \text{ (same c) with } c|a, c|b \text{ if } d|a \text{ and } d|b \Rightarrow d|c \text{ (which implies } d < c \text{ but has more content.)}$

Proof: Let $I = \{ma + nb|m, n \in R\}$ ideal = (c) I = all mults. of c. $a = 1a + 0b \in I$ so a is a multiple of $c \in I$ so $c = m_0a + n_0b$ some m_0, n_0 . Suppose d|a, b. $d|m_0a, n_0b \Rightarrow d|m_0a + n_0b = c$ QED.

Let R be a camm. ring. $\epsilon \in R$ is a unit if $\epsilon | 1$, i.e. $1 = \epsilon \delta$ for some $\delta \in R$. a, b associates if $a = \epsilon b$ for ϵ a unit. (Equivalently: a | b and b | a)

 $p \in R$ is irreducible ("prime") if $p \neq 0$, p is not a unit, and $p = ab \Rightarrow a$ is a unit or b is a unit. Proposition: If p is prime and $p = ab \Rightarrow p|a$ or p|b (true if every ideal is principal). Proof: Let $i = \{ma + nb|m, n \in R\}$ is an ideal. I is principal, so I = (c) for some c (c is GCD(a, b)) $a, p \in I$ $(a = 1 * a + 0 * p \in I)$ So a, p are multiples of c. $c|p \Rightarrow c$ is a unit or c is an associate of p. $(c|p \Rightarrow c$ unit or c' unit. 2nd case: c, p assoc.)

Case 1: If c unit. I = (c) = R, so $1 \in I \Rightarrow 1 = mo + nb \exists m, n \in R \ b = bma + bnp \ (p = ab \Rightarrow p|$ both terms) So p|b.

Case 2: c is an assoc. of $p \Rightarrow I = (c)(p) \Rightarrow p|(any alt of I)$. In particular, $a \in I \Rightarrow p|a$. Corollary: If $p|a_1...a_n \Rightarrow \exists i \ p|a_i$ (Induction.)

THEOREM: Suppose $a \neq 0$ and a not unit. Then $a = p_1 \dots p_n$ has a factorization into primes. If $a = q_1 \dots q_m$ is another factorization, then m = n and the p_i are associates of q_i rearranged.

Proof: If a prime, $a = p_1$ $(p_1 = a, n = 1)$ Otherwise a is divisible by some prime (true if every principal is ideal.) $a = p_1 a', a' < a$, so by induction, $a' = p_2...p_n$, so a can be factored into primes. If $a = p_1...p_n = q_1...q_m$ are two such factorizations. $p_1|a = q_1...q_m \Rightarrow p_1|q_i \exists i$ (WLOG i = 1). $p_i|q_1$ means p_1, q_1 associates. $(q_1$ is a prime so $q_1 p_1 \epsilon$. p_1 is not a unit, so ϵ is a unit $\Rightarrow p, q$ assoc.) $q_1 = p_1 \epsilon, p_1...p_N = \epsilon q_1...q_M \Rightarrow p_2...p_N = \epsilon q_2...q_M = q'_2 q_3...q_M$. $q'_2 = \epsilon q_2$. By induction on N, thm is true for $a' = p_2...p_N = q'_2...q_M \Rightarrow N = M, q_2, ..., q_M$ are associates of $p_2, ..., p_N$

Used fact that we're in an integral domain: $ax = ay, a \neq 0 \Rightarrow x = y$.

THEOREM: (Fermat's Little Theorem) Let p be a prime. Then $a^p\equiv a \mod p.$ This means $p|a^p-a$

If $p|a \Rightarrow p|a^p$, so $a^p \equiv 0 \equiv a \mod p$. Easy. So assume p does not divide a. Then need to prove: $pnot|a \Rightarrow a^{p-1} \equiv 1 \mod p$. $(a^p \equiv \text{follows by multiplying by } a.)$