Math 120 Class Notes

Lucas Garron

March 28, 2011

Mar 28, 2011

Definition 1 Group. A group (G, \circ) is a pair of

- 1. a set G, and
- 2. a rule that takes in two elements $a, b \in G$ and outputs one element $a \circ b$. (a function $: G \times G \to G$)

satisfying the following axioms:

- 1. for any $x, y, z \in G$, $x \circ (y \circ z) = (x \circ y) \circ z$ (associative law)
- 2. there is an element $e \in G$ such that $x \circ e = e \circ x = x$ [Note: Unique. Can prove one order from the other.]
- 3. for every $x \in G$, there is an element $y \in G$ such that $x \circ y = y \circ x = e$ [Note: Unique.]

Note 1 e is unique. If e, e' both have the property of (2), $e' = e \circ e' = e$

Note 2 Similarly, the y from (3) is unique. It is called the *inverse* of x, denoted by x^{-1} (e.g. $e^{-1} = e$)

Example 1 Some example groups:

- G = all rotations of the sphere.
 ∴ R ∘ R' = R' followed by R e: rotation that does nothing
- 2. $G = \mathbb{R}$ (real numbers) $x \circ y = x + y$ e = 0" $x^{-1} = -x$
- 3. $G = \mathbb{R} \setminus \{0\}$ $x \circ y = x \cdot y$ e = 1 $x^{-1} = 1/x$

4. Permutations. A permutation of X is a bijective function $X \to X$. If σ, σ' are permutations, then so is $\sigma \circ \sigma' =$ permutation given by first applying σ' then σ . (Think $(\sigma \circ \sigma')(x) = \sigma(\sigma'(x))$). For any set X, (set of permutations of X, \circ) is a group.

Example 2 Take $X = \{1, 2, 3\}$. There are 6 = 3! permutations of X.

Definition 2 Symmetric group of X. $Sym(X) = (\text{permutations of } X, \circ)$ (Relationships between groups: section 1.6)

Definition 3 Homomorphism. $\varphi : (G \circ) \to (G', \circ')$ is a function $\varphi : G \to G'$ such that $\varphi(x \circ y) = \varphi(x) \circ' \varphi(y)$.