Math 109 Notes

Lucas Garron

January 7, 2010

20100107

Non-abelian finite order Symmetries of abe (composition)

Abelian infinite order $(\mathbb{Z}, +)$ (countable) $(\mathbb{Q}^{\times}, \cdot)$ (countable) $(\mathbb{R}^{\times}, \cdot)$ (uncountable)

Suppose that G is a group with at least one non-identity element. $G = \{e, g, g^{-1}, ...$ Possibilities for g: 1) $g = g^{-1}, gg = e$ 2) $g \neq g^{-1}$

Def. Suppose $g \neq e$. The order of g is the smallest integer n such that $g^n = e$. $(\underbrace{\frac{ggg...g}{n}}_{n} = e)$

Suppose G is group with at least one non-identity element of infinite order. $G = \{e, g, g^2, g^3 \dots$ \rightarrow Why is $g^n \neq g^m$ for $m \neq n$? $(g^{-1})^n g^n = (g^{-1})^n g^m$ $\Rightarrow e = g^{-n+m}$ If $G = \{e, g, g^{-1}g^2, g^{-2}, g^3, g^{-3} \dots$ is everything, it is the uninfinite cyclic group.

 $(\mathbb{Z}, +)$ is an infinite cyclic group generated by 1 or -1.

Ex. Element with finite order: Symmetry group of a cube. Consider a rotation r (y') rrrr = e implies order of r is 4.

Def. G and G' are isomorphic if there is a bijection $\phi: G \to G'$ such that $\phi(ab) = \phi(a)\phi(b) \land a, b \in G$

The infinite cyclic group generated by g is isomorphic to $(\mathbb{Z}, +)$

 $(\mathbb{Z}_n, +)$ integers modulo n; a finite cyclic group of order n. $\mathbb{Z}_n = \{0, 1, 2, ..., n - 1\}$ $a + b = a + b \mod 7$

Dihedral groups D_n For $n \geq 3$, this is the symmetry group of a regular *n*-gon. $|D_n| = 2$ D_n is generated by two elements. Triangle: Reflections a, b, c, rotate by $\frac{2\pi}{3} = r$ or $t = r^2$ a b c r t e \mathbf{a} е \mathbf{b} е с е t r \mathbf{t} е

Presentation of the group D_3 using generators and relations. $D_3 = \{r, a | r^3 = 1, a^2 = 1, ar = r^{-1}a\}$

Show that any word in $\langle r, a, r^{-1}, a^{-1} \rangle$ can be reduced to $\{e, r, r^2, a, ra, ra^2\}$ using the three relations.

 $D_n = \{r, a | r^n = e, a^2 = e, ar = r^{-1}a\}$