Math 109 Notes

Lucas Garron

January 5, 2010

20100105

A <u>set</u> is a collection of elements: - Integers in \mathbb{Z} - students in Math 109.

Ex. $(\mathbb{Z}, +)$ form a group. Adding two integers \rightarrow integer $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ 0 is special: $a \in \mathbb{Z} \equiv > a + 0 = 0 + a = a$ $\land a \in \mathbb{Z}, \exists$ an additive inverse (-a)

Ex. Symmetries of a Cube C \rightarrow Transformation sends C to itself. r_1, r_2, r_3 (axes U, R, F), rotate each by $\frac{\pi}{2}, \pi, \frac{3\pi}{2}$ Reflect across the plane containing 2 r_i axes. (Symmetries of C, composition)

Identity Symmetry: Do nothing Inverses: rotation by $\phi \rightarrow \text{rot} - \phi$, reflection \rightarrow reflection

<u>Def</u>: A group is a set together with an associative operation $*: G \times G \to G$ such that - \exists an identity $e \in G$ s.t. $g * e = e * g = g - \land g \in G \exists$ an inverse g^{-1} with respect to * s.t. $g * g^{-1} = g^{-1}g = 1$ - Associative: a * (b * c) = (a * b) * c

Proposition: Inverses are unique. <u>Proof</u> Pick $g \in G$ and suppose f, h are inverses of g f = e * f = (h * g) * f (because h is an inverse of g) = h * (g * f) = h * e = h

Prop: The identity is unique <u>Proof</u>: Suppose e, e' are identities in G: e = e * e' = e' g * e = g = g * e' $g^{-1} * (g * e) = g^{-1}(g * e)$ $(g^{-1} * g) * e = (g^{-1} * g) * e'$ e * e = e * e' e = e'

<u>Def</u> The group (G, *) is <u>Abelian</u> if * is commutative (a * b = b * a)Ex. $(\mathbb{Z}, +)$ are Abelian.

Let's find more groups! (Z, \cdot) ? - No inverse to, say, 3. (\mathbb{Q}, \cdot) ? (\mathbb{R}, \cdot) ? $\mathbb{R}^x = \{x | x \neq 0 \in R\}$ $(\mathbb{R}, *)$ is an Abelian group.

How can we tell groups apart? (Need invariants?) <u>Def</u> The <u>order</u> of a cube is the number of elements in the set |G|. |Symmetries of a Cube| = 48